
Dean Thomas Allemang
Trinity College

Machine Computation with
Finite Games

submitted for hi. S c .
on 7 September, 1984
revised February, 1985

DECLARATION BY AUTHOR OF THE DISSERTATION

Name of author in full .. D ~ P N TWOMI+S &!r.!&%Lf..k?!%
(block letters)

ntle of dissertation as MacLwe .. ~ompcatLLc- w ; f l..
approved by the Board
of Graduate Studies 6:k&. $..a.*!% ...
1 I understand that I am the owner of the copyright of this dissertation and
of the summary of the dissertation and that the copyright rests with me unless I
specifically transfer it to another person.
2 I understand that the University requires that I shall deposit one copy of my
dissertation and one copy of the summary in the University Library where they
shall be available for consultation, and that photocopies of them shall be made
available by the University Library to those who wish to consult them elsewhere.
I understand that the Library, before allowing the dissertation or the summary
to be consulted either in the original or in a photocopy, shall require each person
wishing to consult them to sign a declaration that he recognises that the copy-
right of the dissertation and of the summary belongs to me and that no quotation
from them and that no information derived from them may be published without
my prior written consent.
3 I agree that, subject to any conditions decided upon by the Board of Graduate
Studies under Regulation 16 of the Regulations for the Ph.D., M.Sc., and M.Litt.
Degrees, my dissertation and summary shall be available for consultation in
accordance with paragraph 2 above.
4 I agree that, subject to any conditions decided upon by the Board of Graduate
Studies under Regulation 16 of the Regulations for the Ph.D.. M.Sc., and M.Litt.
Degrees, the summary of my dissertation shall be available for copyingand
publication at the discretion of the Board of Graduate Studies.

BOARD OF GRADUATE STUDIES Signed
4 MILL LANE
CAMBRIDGE
CB2 1RZ

GS 0

Y
Lk tl? ... 2 Sepf / ? 8 y ’

MACHINE COMPUTATION WITH FINITE GAMES

In this work I will discuss the application of a digital computer to the theory of games
as .presented in Conway, On Numbers and Games [3] (henceforth, I will refer to this as
ONAG), and Berlekamp, Conway and Guy, Winning Ways [l] (henceforth, WW). Often
I have found that slight variants of the definitions given in ONAG and WW are more
convenient for the computer's calculations. In these cases, I will describe the modified
notation and definitions rather than the originals.

I will describe two projects, which treat widely different topics from ONAG. The first
treats the theory of mis&re play of impartial games, the second deals with the theory of
normal play of partizan games.

Misdre play of impartial games
With the aid of the computer, I was able to obtain results much more extensive than

those presented in WW and ONAG. For many of the octal games introduced in WW,
I have been able to use these results to obtain complete solutions, which are catalogued
in the final chapter. For many other games, I provide extensive incomplete solutions in
appendix 11.

Normal play of partizan games
The theory from ONAG and WW has eliminated much of the combinatorial com-

plexity from this domain, so the computer's impact is much less dramatic; it serves as a
tabletop calculator to assist the games theorist in his calculations. In this work I describe
how this system appears to the user, and a sample of its performance.

1

MISkRE PLAY OF IMPARTIAL GAMES

The games (or interchangeably, the positions) whose outcomes the computer has cal-
culated are finite in nature. A game G is constructed as a finite set of games (called the
options of G) which have already been constructed, and this is the only way in which games
arise. G, its options, their options, and so forth, are the positions of G. This construction
allows us, in any non-empty set of games, to find a (not necessarily unique) simplest game
in that set, that is, a game s in that set, such that no other position of s is in that set.
We write GI for a typical option of G, either to indicate a particular option, or all the
options collectively, so that the set of options of G is {GI}. We identify a position with
the set of its options, so we can write G={G'}. These games are called impartial because
the legal moves from any position are the same for both players. MisLre play means that
a player who has no legal move is declared the winner, and that this is the only way in
which victory is decided. (c.f. Grundy & Smith, IS!)

The sum of two positions G and H is defined in the usual Conway sense (ONAG, p.
74) as the position in which a legal move is to choose a summand and make a move there.
Thus G + H = {GI + H , G + HI}. Since these games are impartial, the same moves are
available to both players, hence the players can only be distinguished by knowing whose
turn it is to play. We have the Nest player, whose turn it is to play, and the Previous
player, who we may as well suppose has just played. In a finite game in which every end
position is considered a victory for some player, there exists a winning strategy for one of
the players. If a game has a winning strategy for the next player, then we say that the
game is an U position, otherwise it has a winning strategy for the previous player, so we
call it a Pposition. Except for the game 0 = {} (the game with no options), which is
an N position, a position is a P position in mis6re play if and only if all of its options are
N positions. The value P or N associated with a position G is called its outcome, and is
written as o(G).

Since we are primarily concerned with the outcomes of sums of positions, we shall say
that two positions G and H are equal, and shall write G = H : iff o(G -t T) = o (H + T) for
all positions T . Two positions that look different when written as sets of options may, in
fact, be equal in this sense. In ONAG chapter 12 Conway presents an elegant discussion
of exactly when this happens. This rests on the notion of reversible moves. which I shall
review.

To the position G = { A , B , C, . . .} we shall adjoin reversible moves X , Y , 2 to get
H = {-4,B,C,. . . X , Y , Z } . For G + 0, we call these moves reversible if from each of
X , Y , Z there is a move hack to a game equal to G. If G = 0 = {}. in addition to this we
also require that one of X , Y , Z is a P position.

The things which we need to know about reversible moves are that:
1) For G, H as above, G = H
2) If neither G nor H has a reversible move, and G = H , then for any option GI of G we

can find an option H' of H with GI = HI, and vice versa.
Detailed proofs of these can be found in OKAG chapter 12.

2

Normal play of Impartial Games
Before we discuss miskre play, we shall review briefly some of the theory of normal play. *

We begin by examining the game of Nim. Nim is played with heaps of coins, the legal
moves are to remove any number of coins from any one heap. The outcome is decided only
when there are no coins remaining, and the player whose turn it is to move is unable to
do so. Since we are considering normal play, this player loses, and the other player wins.

We will denote a nim heap of n coins by *n. In the notation of sets of options, we
have that

n = {(n - I), *(n - 2),. .. * 2, *I, *0}

Notice that no play is possible from a heap of zero coins, so *O = 0.
We define the outcome of a normal position just as we did for the miskre case, i.e.,

depending on which player has a winning strategy. A game is a P position exactly if no
option of it is a P position. There is no exception for *0, so since *O has no P options, *O
is a P position. We define sums and equality of games in the same way as we did in the
miskre case.

It turns out that we have a simple, complete analysis of Nim, given by the following
rule:

The sum of any number of nimheaps is equal in normal play to a single nimheap. The
size of this single heap is the nirnsurn of the sizes of the summands.

The nimsum, which we write as +, is given by the following rules:
*

*
a+a = 0
*

2m+2n = 2m + 2n for m # n

To play Nim, we need only observe that the P positions are exactly those which equal

This analysis is extended to an analysis of all impartial games by the following rule:

Any impartial game is equal in normal play to some nimheap. The size of this nimheap
is called the normal Grundy value of the game. The normal Grundy value of a game is the
me5 of the normal Grundy values of its options. (c.f. Grundy [8] and Sprague (121)

Mez stands for minimal enludant. The me5 of a set of integers is the least nonnegative
integer which is not contained in that set; so that mex(0, 1,4,7,12} = 2, mex{l,2,3,4,5} =
0. For this work, we need not worry about the mex of an infinite set.

Nimheaps, mex, and nim addition will all appear in the discussion of the miskre play
of impartial games, with the same definitions as they have in the normal case.

*O. (c.f. Bouton [21)

* A detailed discussion of this can be found in ONAG chapter 11.

3

Miskre Play

Following Conway in ONAG, we would like to write down some information for each
position which will help us to compute outcomes of complicated games. The most obvi-
ous bit of information to keep about a game is its own outcome. This would be all the
information we would need if we were always given a game as a set of options. However, a
game will often appear as a sum of games. Hence, for any game G, we would like to write
down the outcomes of G + x for all x E X , X some set of games. What should X be?

We would like X to have the property that if x E X , then X I E X also. When this
holds, we say that X is closed under descent. If we may assume that we have already
computed all outcomes GI+ z (2 E X) , then this demand guarantees that we will be able
to compute easily the outcomes G + x as follows:

In order to compute the outcome of G + x we need to know the outcomes of G' + x
and G + XI. The former we know by assumption, and, since X is closed, we have already
computed the outcome of G + x' (the construction for games allows us to partially order
X so that we always compute G + X I before G + 2).

If we demand that the set X be closed under addition, then whenever we have written
down the outcomes of G + x for all x E X , we have also written down, for any y E X , all
outcomes G + y + x,

Theorem I will give us some guidance for choosing what set X to use. Before stating
it, I must introduce the set of games we will call udders (c.f. the game udders on p. 409 of
W W). We will write an adder as : n for n 2 0, and define them by the following formula:

z E X .

n terms
b

: (272) = * 2 + - * - + * 2
: (272 + 1) = : (2 n) + *I

In terms of options, we have the following:

:o = {} = *o = 0

: l = { :o }= *1
: 2 = { :o, :1} = * 2
: 3 = { :o, :1, : 2 } = *3

: 4 = { : 2 , :3}
: 5 = { : 2 , : 3 , :4}

: 2 n + 2 = { : 2 n , : 2 n + 1)

: 2 n + 3 = { : 2 n , : 2 n -t 1, : 2 n + 2)

Notice that :O = *O = 0, and : 1 = *l.
Theorem I. The three sets {: 0}, {: 0,: 1) and {: 0, : 1 , : 2 , . . . } (all 'adders') are

all closed under both addition and descent. Any other set closed under both of these
operations has each of these sets as subsets.

4

Proof.

The rule for addition tells us that :0+ : O = {} + {} = {} =:O, so { : O } is closed under
addition. Clearly it is closed under descent.

The rule for addition tells us that

: I + * 1 + *I = {*o} + {*o} = {*I + *o} = {*I}

Now *l = {SO}, ,and *O is an J/ position, so *l is a P position. Hence the move to *1 is
reversible, whence ($1) = {} = 0, so that : 1+ : 1 = : O , and {0,1} is closed under addition.
Clearly it is closed under descent.

For any n,m 2 0,

:n+ :m = *2 + *2 + ... * 2(+ * 1) + *2 * 2 + ... * 2(+ * 1)

One summand + * 1 appears if n is odd, the other appears if m is odd. Since + is associative
and commutative, and *l + *1 = 0, at most one summand + * 1 remains, and the sum is
again an adder. This gives us the following rule for summing adders.

For N , M both odd,
For N , M not both odd,

I will be making so much use of adders in this work that I will often omit the : when
there is no possibility of ambiguity. However, to remind us that the sum for adders is not
the same as the sum for the corresponding integers, I will write the sum with a : instead of
a +, so that : n+ : rn will be written as n : m. Since the adders are closed under addition,
and clearly are generated by the adders 1 and 2, we can write the set of adders as (1,2) .

That the set of adders is closed under descent is clear from the facts that : 2 = {: 0, : I}
and :1 = {:O}.

Let X be a set of games closed under addition and descent. Let s be simplest in
X \ (0). Since X is closed,-all options of s are in {0}, so s = 0 or s = 1. Let t be simplest
in X \ (0, I}, whence all options of t are in (0, l}, so t is one of {} = 0, {0} = 1, (1) = 0,
(0, l} = 2, i.e., t = 2. Since X is closed under addition, we have (1,2) c X . H

The simplicity argument forced our choice of which game to adjoin to the set {0} to get
(0, l}, and again which one to adjoin to get {0 ,1 ,2 ,3 , . . .}. This fails to determine uniquely
which game should be adjoined to the adders to get another set with these properties, since
several games (like {4,0}, (4, l}, {4,2, l}, etc.) can be admitted as simplest members of a
larger closed set.

It now seems natural to use the three sets {0}, (0, l}, and {0 ,1 ,2 ,3 , . . .} in the role of
the set X above. For some game G, if we write down the outcome of G + x for all x E { 0 } ,
we have only written down the outcome of the game G. If we write the outcome of G + x
for all x E {0,1}: we need to write two outcomes. However, since 1 = { 0 } , we know that
G is an option of G + 1: so we cannot have that both G and G + 1 are P . One of three
things is possible, either

: N + : M = : N + M - 2
: N + : M =: (N + M)

i) the outcome of G is P , and G+ : 1 is 1

5

ii)
iii)

the outcome of G+ : 1 is P , and G is J/
neither the outcome of G nor the outcome of G + 1 is P . or

For the case (i) we will write 0, for the case (ii) we will write 1, and for the case (iii)
we will write the blurry symbol, #.

When we try to write down the outcome of G + z for all x E (1,2), we have an infinite
number of outcomes to write down. At least we have a natural order in which to write
them, that is, adding first 0, then 1, 2, etc. So, for example, since 0 is an Uposition, 1 is
a P position, 2 is N etc., we could write down for 0 the sequence

NPNNPNNNPNNNP.. .
0 1 2 3 4 5 6 7 8 9 ...

This seems counterproductive, since we are using an infinitely long symbol to write
down less information than we could extract from the line 0 = {}! However, there is no
need to write down the infinite string, since Conway has shown that this is an ultimately
periodic sequence, which will repeat every four entries. That is, we could write the sequence
for 1 as

NPNNPNNN

with the understanding that the last four values will repeat indefinitely.
Since we write down the outcomes for the sums G : 2n and G : (292 + 1) next to

each other, we can instead write one of the symbols 0, 1 and # as before for two of these
possibilities. In this way the pairs PIV, NP and NN become 0, 1 and # respectively (PP
cannot occur), and the sequence for 0 becomes

1#0#

We shall call a sequence of this type a blurry genus sequence. We can interpret each
location as describing the outcome of the gkmes G, G : 2, G : 2 : 2, etc., writing a 1 in
the nth place if G : 2n+ : 1 is P , a 0 if G : 2n+ : 0 is P , and a # if neither case holds.
We might also wish to replace #’s which precede 0’s by 2’s and #’s which precede 1’s by
3’s, to indicate that G : 2n+ : 2 or G :2n+ : 3 is P respectively. Then the above sequence
becomes 1202. Notice that this form conveys no more information than the form with
#’s and we shall regard them as identical. All computations presented in this work were
therefore done with the blurry sequence, even though they may be printed with 2’s and
3’s where appropriate. In ONAG, Conway distinguishes all possible occurrences of # in
the same way, using other nimheaps. That is, the nth digit of Conway’s sequence is k if
G+ :2n + *k is a P position. * I will call this form of the genus sequence the sharp genus
sequence, since it makes a sharp distinction between all occurrences of #. I will seldom
use the sharp sequence, and unless otherwise specified, any genus mentioned here is the
blurry one.

* To use Conway’s sequence in the computer would require us to allocate enough space
for each entry to accommodate large nimheaps. Since we seldom need, to distinguish large
nimheaps, I have chosen to economize and use the blurry genus as described in this work.

6

Because of the choice we have made for the set X, (i.e., (1,Z)) which is closed both
under addition and descent, we have a very simple algorithm for computing the genus
sequence of G given the genus sequences for all the options G‘ of G . This algorithm uses
the mez of a subset of (0, 1, #}. This mex is just the same as the normal mex defined
above, except that all integers greater than 1 are blurred together, and are all written as
#. We can write down the mex of all subsets of {0,1, #}:

subset {I (0) (1) {0,1) {#I {#,O} {#J} {#,1,0}
mex 0 1 0 # 0 1 0 37P

If we refer to the mtries in the genus sequence of a game G as gO(G), g1(G), etc., then
the following rule tells us how to compute the genus of G given the genera of G‘ (From
ONAG, chapter 12):

go(0) = 1; if G # 0, then go(G) is the mex of the go(G’)
F O ~ all G , gi+l(G) = mex{gi+l(Gf),Oigi(G’), 1 i g i (G) }

These mex entries come from the computation of the outcome of

G :2n+ :2 = {G‘ :2n+ :2,G+ :2n+ :1 ,G+ :2n+ :0}

The outcome of the first option can be read from the genus sequence of G‘, the other two
from the genus of G so far.

This algorithm can be performed easily with pencil and paper using the following
format, which will be generalized later:

*
O # #

g i - 1 +O 1 # #
carries

genus of 1 O$ 1 #
genus of :4 @ # 0 #

~~

genus of {1,4} I # # 0

This computes the genus of {1,4} from the genera for 1 and 4; we write the genera
as if we were doing ordinary sums, only we work from left to right, using mex instead of
addition. We carry our Fesult (and the result $1) to the next column on the right, to be
used in that mex.

*

Reviewing the definition and computation of the genus sequence, we have that
1) G is a P position iff go = 0
2) The genus of G+ : n can be trivially computed for any adder :n .
3) The genus of G can be computed without very much difficulty given the genus of all

4) The genus sequence of any position is ultimately periodic of period 2.
the options of G.

(WW, chapter 13)
(1) follows immediately from the definition of the genus sequence, since from the start

we have written the outcome of G first. (2) follows from the additive closure of the set
X = (1,2); in order to compute the genus of G : 2, we merely shift the whole sequence

7

one to the left (since the ith entry indicates the outcome information about G :2i, it also
indicates outcome information about G : 2 : 2 (i - 1)); to compute the genus of G : 1, we
nim-add 1 to each entry (if G : O is P (i.e., go(G) = 0) , then G : 1 : 1 is P (gO(G : 1) = 1);
if G : 1 is P (go(G) = 1) then G : 1 : 0 is P (gO(G : 1) = 0)). The algorithm for (3) was
outlined above, and (4) follows easily from this algorithm.

During the rest of this work we will discuss two sorts of regularities which occur in
the computations we make. Both sorts have a good claim to the name 'periodicity', so I
would like to distinguish them clearly.

The first sort is the periodicity inside a genus sequence which we have already met in
(4) above, i.e., we know that the genus sequence of a game repeats with period of 2 from
some point on. I will spend most of this work discussing this sort of periodicity, and will
refer to it as periodicity in a genus sequence.

When we treat the positions which arise using a particular set of rules (say, those of
Grundy's Game, q.v.), we often find that several different positions have some property in
common, and that often this recurs at regular intervals (e.g., we may find that for some
rules, heaps of size 10, 20, 30, etc. all have the same genus, as do heaps of size 11, 21,
31, etc.). Since I will, on occasion, wish to refer to this phenomenon and the previously
mentioned periodicity in the same discussion, I will refer to this phenomenon as recurrence
of genus values.

For the purpose of computing genus sequences, we are particularly interested in dis-
covering when games are equal to adders, since it is these games which the genus sequence
is designed to handle. Also, since games are often presented as sums of known games, we
would like to be able to tell whether sums are equal to adders without working out all of
their options. Happily, it turns out that by exploiting the structure of adders we find that
the only sums which equal adders are sums of adders. To prove this, we need to know
Conway's Cancellation theorem. The statement of the cancellation theorem appears in
ONAG, but not the proof, so I have obtained his permission to include a proof here.

First we need some more definitions.

Let X and Y be equal games, X = Y , The properties of reversible moves tell us that
for any option X' of X one of two things happens:

i) There exists a Y' for which X' = Y'
or ii) There exists a X" for which X" = Y .

That is, either X' equals an option of Y , or Y equals an options of X ' . With this in
mind, we make the following definition:

A is adjacent to B , which we write as A @ B, means that either there exists A' with

We have that X = Y =+ X' @ Y , for any option X' of X .
If X + Y = T, we call X and Y parts of T .
We say that a game T is cancellable if for every pair of games G and H we have

A' = B or there exists B' with B' = A .

i) G + T = H + T =+ G = H , and
ii) G + T @ H + T * G @ H

8

If (i) and (ii) hold for some particular games G and H , we will say that T is cancellable

Before we can prove the cancellation theorem, we need some lemmas about parts and

Lemma 1. 0 and 1 are the only parts of 0.

Proof. Let A be a simplest non-trivial part of 0, i.e., A is a part of 0, A # O , l , but
every position of A is either 0, 1, or not a part of 0. Since A is a part of 0, it has a negative,
so we have

from G and H .

cancellability.

A + (- A) = 0

Suppose A has an option A' not equal to 0 or 1. We have that

So either

or

A'+ (- A) @ 0

A" + (- A) = 0

A' + (-A)' = 0

From the former we can deduce that

A" = A" + (- A) + A = A

and hence A was not a simplest such position.
The latter leads to a contradiction since A' is neither 0 nor 1, and hence is not a part

of 0.
Hence all of the options of A are either 0 or 1, so A is either 0, 1, or 2. Similarly, - A

is either 0, 1, or 2. Since 0 + 0 = 1 + 1 = 0 and 2 + 2 # 0, 0 and 1 are the only parts of 0.
rn

Notice that since A + B = 1 + B + 1 = - A, we can also say that 0 and 1 are the
only parts of 1.

Lemma 2. If T is cancellable, so is any part of T .

Proof. For any part X of T , there is a Y such that X + Y = T .

G + X = H + X + G + X + Y = H + X + Y + G + T = H + T + G = H
G + X @ H + X + G + X + Y @ H + X + Y + G + T @ H + T + G @ H

Theorem I1 (Conway's Cancellation).

For any game T ,

T is cancellable, and
T has finitely many parts (up to equality)

Proof. Let T be a simplest counterexample, i.e., T does not satisfy (i) and (ii), but
option of T does.

9

First we prove that T has only finitely many parts, or equivalently, that T has only

For any partition of T
finitely many partitions.

X + Y = T
we have X + Y @ TI for some option TI of T.

So either
a) X' + Y = TI
b) X + Y' = T'

or c) X + Y = TI'

In case (a), Y takes only finitely many values, since it is a part of some TI, and all
such Y are cancellable (by Lemma 2), and so uniquely determine their corresponding X .

Similarly in case (b), X takes only finitely many values, and determines the corre-
sponding Y.

Finally, case (c) implies that T was not a simplest counterexample.
Now we show that T is cancellable. If not, let G and H be a simplest pair of games

from which T is not cancellable.

First suppose that
G + T @ H + T

whence either

a) G ' + T = H + T
b) G +TI =zH + T
c) G + T = H ' + T

or d) G + T = H + T '

In cases (a) and (c), since the pairs GI, H and G , H' are simpler than G, H , we can
cancel T and get that GI = H or HI = G, that is, G C2 H .

In cases (b), (d), we can deduce that G + T' C2 H + TI, so since TI is simpler than T,
G @ H .

So G + T 42 H + T + G @ H , in all cases.

Now suppose that G + T = H + T .
Then for any GI and option of G,

and then
G' 42 H

Similarly, for any H' , we have that H' 42 G.

Our rules for reversible moves tell us that this implies that G = H , except in the case
where one of G and H is 0. So in the remaining case, without loss of generality, we have

G + T = T

10

and we wish to show that G = 0.
We immediately deduce

G + T Q T '

so that either

a) G' + T = T'
b) G + f = T' for f an option of T (possibly distinct from T')

or c) G + T = T"

Case (a) tells us that T is a part of T', so by lemma 2, T is cancellable, and G = 0.
Case (b) tells us that G is a part of T', so G is cancellable. Now from G + T = T we

have that n . G is a part of T for all n. But T has finitely many parts, so n . G = rn - G for
some m < n, and since G is cancellable, (n - rn) . G = 0. From lemma 1, we have that G
equals 0 or 1. Clearly G # 1, so G = 0, as desired.

Finally, case (c) implies that T was not simplest.

Corollary 1. If A + B =: n, then A and B are both adders, say : a and : b, and both *
a and b 5 max(n,n+l).

Proof. Let A + B =: n. If n < 2, then A and B are both 0 or 1. For larger n, : (n - 2)
is an option of : n, so without loss of generality, A' + B =: (n - 2) for some A'. Now
by induction B is an adder, say : b, b 5 max(n - 2,n - 2+1). Now A+ : 6 =: n, and by
Conway's Cancellation theorem, A is also an adder, say : a , and a 5 max(n,n+l).

*
*

Now, if we are given a sum of games, and we wish to know whether they are adders,
we know that all we have to do is to look at the summands. If they are adders, then so is
the sum; if one of them is not, then neither is the sum.

11

THE GENUS SEQUENCE ALGORITHM

If we were to be given the tree of a perfectly arbitrary game, our genus techniques
would probably not be of much use for determining its outcome. However, many games
(Nim, for instance) have positions which are naturally expressed as sums, and rather than
being given a game tree, we are given rules for expressing the options of one position as
sums of the other positions. In such a case, it is quite useful to know the genus sequence of
any fundamental positions which make up (as summands) all the possible positions. For
Nim-like games (played with heaps of counters, where the rules specify allowable ways to
remove counters and/or split up heaps) these are just the single-heap positions. For more
complex games, it may be necessary to make up a dictionary of simple positions and their
genera. Of course, since the genus sequence makes addition with adders easy, we should
also note whether any games are equal to adders.

In the following algorithm I will represent adders by integers, and the operation on
integers which corresponds to the sum on adders I will call the adder-sum.

I have experimented with several different sorts of algorithms, and have found the
following ‘nai’ve’ algorithm to be the most effective: *

For each fundamental position, do the following:
Use the rules of the game to express the options of this fundamental position as sums

of earlier fundamental positions. Given the genus of each of these options, compute the
genus of this fundamental position.

In order to ”compute the genus of a position, it suffices to compute recursively the
genera of the options, and apply Conway’s rule as demonstrated above

In order to compute the genus of a sum, first check to see if all the summands but one
are adders. If so, adder-sum them together, and shift the genus of the remaining game by
the amount specified by this adder-sum. Otherwise, use the rule G t H = {G’+ H , Gf H ‘ }
for all options which are not adders (G’ and H’ are computed using the rules of the game).
For future reference, record the wild (non-adder) summands alongside their sum.

Check to see if this fundamental position is an adder.
We know whether any earlier fundamental position is an adder, so by Corollary 1

we know which, if any, of the options of this fundamental position are adders. For any
non-adder option, search its options for reversible moves, using Corollary 1 again.

This algorithm performs quite well in practice, and the results of using it to compute
genera for the octal games (introduced by Guy and Smith [lo], with some values tabulated

* The most sophisticated algorithm I tried stored each position as an ordered pair
consisting of an adder and a more ‘wild’ position; each wild part pointed to the other
positions, so that all options were held explicitly in the computer’s memory. Whenever
it was detected that two wild parts were equal, all pointers were re-organized so as to
leave only one copy in the machine’s memory. This scheme saved a substantial amount
of time while working with games which would simplify; however, the storage bottleneck
eventually dominated, and the nai’ve algorithm described in the text.was able to perform
better.

12

in WW chapter 13) can be found in appendix I. At the end of the next chapter are the
genus sequences for Grundy’s game. This game, in which a legal move is to split any heap
into two heaps of different sizes, is an especially fine showcase for the genus sequence, since
so many Grundy heaps are equal to adders. For this reason, I have chosen Grundy’s game
for a case study.

13

GRUNDY’S GAME

In table iii at the end of this chapter, I have included not only the genus sequences for
the single heaps in Grundy’s game, but also the genera of sums of two heaps (such as are
needed to perform the single-heap calculations). Most of the information in the discussion
to follow is condensed from table iii.

In the following, the letter G followed by an integer refers to a heap of the appropriate
size in Grundy’s game.

Some computational shortcuts in Grundy’s Game
Conway (in ONAG, chapter 12) has noted that in any sum of Grundy heaps smaller than
28, any two heaps of size 13 can be neglected in the computation of the genus sequence
of the sum. We can easily check to see if this trend continues for single larger Grundy
heaps. I will illustrate the method for the 28 heap. We wish to know if G28 + G13 + G13
has the same genus as G28. We could compute the genus of G28 by computing the genus
of all options of G28, which I will denote as G28’, and using Conway’s rule. To compute
the genus of G28 + G13 + G13, we need to know the genera of G28‘ + G13 + G13 and
G28 + G13’ + G13. Since the options of G28 are just sums of smaller heaps, we know
that the genus of G28‘ + G13 + G13 matches that of G28‘. Since G13 = {4,2, l}, this
accounts for all the options of G28 + G13 + G13 except except three, namely G28 + G13 : 4,
G28+G13 :2, and G28+ G13 : 1. Look up the genus of G28+ G13 in table iii; it is 2(2020).
So we have:

a b c d a b c d
options e f g h e f g h options of
ofG28 i j k m i j k m G28-tG13SG13

... . . .
1 3 1 3 3 1 3 1 G28 + G13 : 1

G28 + G13 : 2
G28 + G13 : 4

0 2 0 2
2 0 2 0

? 1 3 1 3 ?

The question mark indicates a line yet to be verified. This can be done by examining
only the numbers shown; since we know that 1 is the mex of the first column of a,e,i,. . . and
it does not appear in the first column of the printed numbers (3,0,2), it must be the mex
of the entire first column, a,e,i,. . .3,0,2. A similar argument applies to the other columns.
That is, all we need to do is to compute these three rows (given the genus of G28 + G13,
this is easy), and check that they do not match the genus of G28 in .any place.

For the 29 heap, this argument as it stands fails, because we have not shown that
G13 + G13 can be neglected in any sum of Grundy heaps smaller than 29. In fact, the only
sums involving G28 that we can deal with are of the form G13 + G13 + G28 + s, where s
is an adder. Fortunately, the only option of G29 + G13 + G13 which involves G28 is just
such a position, so the rule will still work. We check: genus of G29 is (2020), G29 + G13 is

14

(#313); does (#202), (3131) or (1313) match (2020) in anyplace? No; so G13+G13+G29
has the same genus as G29.

This sort of check continues to be relevant (and to work) up to G41. G41 has an option
G28 + G13, but we have not checked that G28 + G13 + G13 + G13 has the same genus as
G28+ G13. We can check this by the same method, that is, check that G28+G13+G13 : 1,
G28 + G13 + G13 : 2, and G28 + G13 + G13 : 4 do not match G28 + G13. This is easy
to do, since we know the genus of G28 + G13 + G13. Indeed this is the case, so we have
justified our check for G41. From now on these checks will be this tedious, so we will leave
them to the digital computer.

These observations are helpful when we are playing Grundy’s game, since they allow
us to ignore pairs of heaps in some common circumstances. Later we will see how a
generalization of this method will allow us to ignore certain sums on even more occasions.

Two-heap P positions

We would like to be able to use the data we have from the computer to tell us the outcomes
of heaps larger than 88 (the largest heap the computer treats). Toward this end we examine
the options of single heaps, i.e., the positions with two heaps. We are particularly interested
in those which are P positions.

We can arrange the two-heap P positions of Grundy’s game in such a way that they
are easy to write in a small space. Omitting sums where one heap equals an adder (i.e.,
heaps of sizes 17, 15, 14, 12 or less), every two-heap P position in Grundy’s game involving
less than 88 counters is in one of the following sets (for brevity in this list I will write n
for a heap of n counters):

{39,42,45} + {39,42,45}
{30,33,36} + {30,33,36}

{ 13,16,19,22,25} + {35,38,41,44,. . .68 ,71 ,74 , . . .?}

{18,21,24,27} + {55,58,61,64}
{ 20,23,26,29,32} + { 20,23,26,29,32}

(41) + {38,41,44,. . .?}
{13,16,19,22,25} + {18,21,24,27}

{29,32} + {48,51,54}
{28,31,34,37,. . .49,52} + {28,31,34,37,. . .49,52}

table i . Possible two-heap P positions in Grundy’s game which involve no adders.
Each of these with fewer than 88 counters is known to be a P position.

The sets of games in this list must not be confused with sets of options of a game, so
the sum A + B refers to the set {a + b I a E A , b E B } .

Not only is it true that every two-heap P position (involving no adder) is mentioned
in this list, but also, every sum in this list whose outcome is known is a P position. We
also see that the elements of each set form an arithmetic sequence, with an increment of
three. In most cases, we have enough data to show that these sets are maximal with these

15

properties. Let us examine the sum {18,21,24,27} + {55,58,61,64} as an example of this
maximality. Any of the sets

{15,18,21,24,27} + {55,58,61,64}
{18,21,24,27,30} + {55,58,61,64}
{ 18,21,24,27} + {52,55,58,61,64}

and {18,21,24,27} + {55,58,61,64,67}

satisfies the .arithmetic sequence property. We eliminate the first case, since G15
is an adder. In the other three sets we can find sums (30 + 55, 18 + 52, and 18 + 67
respectively) which we know are U positions. The two queried ellipses are the only cases
where continuation may be possible.

In the next section we use these regularities to predict Ppositions with 88 or more
counters. This greatly simplifies the task of finding outcomes of single large heaps.

Outcomes of large Grundy heaps
Since many small Grundy heaps equal adders, we can easily compute certain sums with
them. From table iii, we find that the go value of G79 is 2; since Grundy heaps of sizes
11, 14 and 17 equal 2, we have that the heaps of sizes 90, 93 and 96 are all Upositions.
A Grundy heap of 84 counters has go-value 1; G15 equals *1, so we have that the heap
of 99 counters is an Nposition. G87 has go-value 2, and heaps of sizes 5,8,11,14 and 17
equal *2, so heaps of sizes 92, 95, 98, 101 and 104 are all Npositions. A Grundy heap of
size 75 has go value 2, and the heap of size 14 equals *2, so the heap of 89 coins is also an
U position.

From the last section, we predict that the sum G27 + G64 is a P position. By hand I
have verified this, and hence we conclude that G92 is an N position.

The only line of table i that might contain a P position with 94 counters is {G41} +
(G38, G41, G44,. . .}, which leads to G41+G53 as the only hopeful candidate for a P option
of G94. However, from table iii we find that G26 + G15 + G53 = G26 + *1 + G53, and
again from table iii we find that this is a P position, whence G41 + G53 is an N position.
We now suspect that since there are no obvious guesses for a P option of G94, that G94
may itself be a Pposition. In table ii, for each option G94' of G94 I find an option G94"
of G94' which is a P position, verifying that G94 is indeed a P position.

As a supplement to table iii, I show the outcomes of single heap positions in Grundy's
game for some heaps larger than 88.

89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104
N N N N N P N N ? N N ? N ? ? N

Thus the n for which we know that Gn is a Pposition are 3,6,9,12,. ..,42,45,50 and
94.

16

1 + 93 - 79 + 14
2 + 92 - 87 + 5
3 + 91 - 3 + 84+ 7
4 + 90 - 4 + 79 + 11
5 + 89 - 5 + 79 + 10
6 + 88 - 6 + 84+ 4
7 + 87 - 7 + 79 + 8
8 + 86 - 8 + 79 + 7
9 + 85 - 9 + 84 + 1
10 + 84 - 10 + 79 + 5
11 + 83 - 11 + 79 + 7
12 + 82 - 12 + 81 + 1
13 + 81 - 6 + 7 + 81
14 + 80 - 14 + 79 + 1
15 + 79 - 15 + 78 + 1
16 + 78 - 7 + 9 + 78
17 + 77 - 17 + 70 + 1
18 + 76 - 7 + 11 + 76
19 + 75 - 10 + 9 + 75
20 + 74 - 11 + 9 + 74
21 + 73 - 10 + 11 + 73
22 + 72 - 10 + 12 + 72
23 + 71 - 11 + 12 + 71
24 + 70 - 14 + 10 + 70
25 + 69 - 10 + 15 + 69
26 + 68 - 12 + 14 + 68
27 + 67 - 10 + 17 + 67
28 + 66 - 28 + 55 + 11
29 + 65 - 15 + 14 + 65
30 + 64 - 30 + 26 + 38
31 + 63 - 31 + 8 + 55
32 + 62 - 15 + 17 + 62
33 + 61 - 33 + 26 + 35
34 + 60 - 19 + 15 + 60
35 + 59 - 26 + 9 + 59
36 + 58 - 28 + 8 + 58
37 + 57 - 22 + 15 + 57
38 + 56 - 26 + 12 + 56
39 + 55 - 28 + 11 + 55
40 + 54 - 25 + 15 + 54
41 + 53 - 26 + 15 + 53
42 + 52 - 25 + 17 + 52
43 + 51 - 43 + 15 + 36
44 + 50 - 29 + 15 + 50
45 + 49 - 45 + 42 + 7
46 + 48 - 46 + 29 + 19

table ii

Proof that G94 is a P position. Most of the positions in the right-hand
column can be looked up i n table iii; those that do not appear there were
worked out by hand.

grundy(O)= *0(1202) grundy(37)= 1(1313)
grundy(1)- *0(1202) 13 + 25 = (1202)
grundy(2)= *0(1202) 16 + 22 - (1202)
grundy(3)= *1(0313) 18 + 20 = (# # # #)
grundy(4)= *O(1202 grundy(38)= 2(# # # #)
s a n d y (5) - *2(2020) 13 + 26 - (#313)
grundy(6)= *1(0313) 16 + 23 = (#313)
gm*(7)- *0(1202) 18 + 21 = (1202)
grundy(8) - *2(2020) 19 + 20 - (#313)
grundy(9)- *1(0313) 39)= 4(0###)
grundy(10)- *0(1202) 13 + 27 - (O # # #)
grundy(11)= *2(2020) 16 + 24 = (O # # #)
grundy(12)= *1(0313) 18 + 22 = (O # # #)
grundy(13)= 3(1#31) 19 + 21 = (O # # #)
grundy(14)= *2(2020) grundy(40)= l (1313)
grundy(IS)= *1(0313) 13 + 28 = (2020)
grundy(16)= 3(1#31) 16 + 25 = (1202)
gnndy(17)= *2(2020) 18 + 23 = (# # # #)
grundy(18)= 4(O # # #) 19 + 22 = (1202)
grundy(19)= 3(1#31) 20 + 21 = (# # # #)
m n d y (20)= O (2 0 2 0) grundy(4l)= 5 (# # # #)
grundy(21)s 4(O # # #) 13 + 29 = (#313)
grundy(22)= 3(1#31) 16 + 26 = (#313)
grundy(23)- O(2020) 18 + 24 = (1202)
grundy(2 4) s 4 (0 # # #) 19 + 23 = (#313)
grundy(25)- 3(1#31) 20 + 22 = (#313)
grundy(26)= O (2 0 2 0) grundy(42)= 4(0###)
grundy(27)= 4(0###) 13 + 30 = (3131)
s a n d y (28)s 1(1313) 16 + 27 = (O # # #)
13 + 16 = (1202) 18 + 25 = (O # # #)
grundy(29)= 2(2020) 19 + 24 = (o # # #)
grundy(30)- 3(0202) 20 + 23 = (0202)
13 + 18 = (O # # #) 21 + 22 - (O # # #)
grundy(31)= l (1313) grundy(43)- l(1313)
13 + 19 = (1202) 13 + 31 = (2020)
grundy(32)= 2(2020) 16 + 28 = (2020)
13 + 20 = (#313) 18 + 26 = (# # # #)
grundy(3 3) s 4(0202) 19 + 25 = (1202)
13 + 21 - (O # # #) 20 + 24 = (# # # # I
16 + 18 = (O # # #) 21 + 23 = (# # # #)
grundy(34)= l (1313) grundy(4413 5 (# # # #)
13 + 22 = (1202) 13 + 32 = (#313)
16 + 19 = (1202) 16 + 29 = (#313)
grundy(35)= 2(# # # #) 18 + 27 = (1202)
13 + 23 = (#313) 19 + 26 = (#313)
16 + 20 = (#313) 20 + 25 = (#313)
grundy(36)= 4(0202) 21 + 24 = (1202)
13 + 24 = (O # # #) 22 + 23 = (#313)
16 + 21 = (O # # #) gmndy(45)= 4(0#20)
18 + 19 = (O # # #) 13 + 33 = (3131)

16 + 30 = (3131)
18 + 28 - (# # # #)
19 + 27 = (O # # #)
20 + 26 = (0202)
21 + 25 = (O # # #)
22 + 24 - (O # # #)
gmdy(46)= l (1313)
13 + 34 - (2020)
16 + 31 = (2020)
18 + 29 = (# # # #)
19 $. 28 - (2020)
20 + 27 = (# # # #)
21 + 26 = (##%#I
22 + 25 - (1202)
23 + 24 - (# # # #)
grundy(47)= 5 (# # # #)
13 + 35 = (O # # #)
16 + 32 = (#313)
18 + 30 = (# # # # I
19 + 29 = (#313)
20 + 28 - (1313)
21 + 27 = (1202)
22 + 26 = (#313)
23 + 25 - (#313)

13 + 36 = (3131)
16 + 33 = (3131)
18 + 31 = (# # # #)
19 + 30 = (3131)
20 + 29 = (0202)
21 + 28 = (# # # #)
22 + 27 = (O # % #)
23 + 26 = (0202)
24 + 25 = (O # # #)
grundy(49)= l (1313)
13 + 37 = (2020)
16 + 34 = (2020)
18 + 32 = (l###)
19 + 31 = (2020)
20 + 30 - (2020)
21 + 29 - (# # # #)
22 + 28 = (2020)
23 + 27 = (# # # #)
24 + 26 - (# # # #)
gmdy(5 0) s 0(0#31)
13 + 38 - (O # # #)
16 + 3 5 ' = (O # # #)
18 + 33 = (# # # #)
19 + 32 = (#313)
20 + 31 = (1313)

4 8 P 4(2020)

t a b l e iii

21 + 30 = (# # # #)
22 + 29 - (#313)
23 + 28 - (1313)
24 + 27 = (1202)
25 + 26 = (#313)
grundy(51)= Z(2020)
13 + 39 - (31##)
16 + 36 - (3131)
18 + 34 - (# # # # I
19 + 33 = (3131)
20 + 32 = (0202)
21 + 31 - (# a # #)
22 + 30 - (3131)
23 + 29 = (0202)
24 + 28 - (# # # #)
25 + 27 - (O # # #)
grundy(52)- l(1313)
13 + 40 = (2020)
16 + 37 = (2020)
18 + 35 = (1202)
19 + 34 = (2020)
20 + 33 = (2020)
21 + 32 = (I###)
22 + 31 = (2020)
23 + 30 - (2020)
24 + 29 = (# # # #)
25 + 28 = (2020)
26 + 27 = (# # # #)
grundy(53)= O(3131)
13 + 41 = (O # # #)
16 + 38 = (O # # #)
18 + 36 = (# # # #)

20 + 34 = (1313)

22 + 32 = (#313)
23 + 31 = (1313)
24 + 30 = (# # # #)
25 + 29 - (#313)
26 + 28 = (1313)
grundy(54)- ~(2020)
13 + 42 = (31##)
16 + 39 = (3l##)
18 + 37 = (# # # #)
19 + 36 = (3131)
20 + 35 = (3131)

22 + 33 = (3131)
23 + 32 = (0202)
24 + 31 = (# # # #)

19 + 35 = (O # # #)

21 + 33 = (# # # #)

21 + 34 = (# # # #)

25 + 30 = (3131)
26 + 29 = (0202)
27 + 28 = (# # # #)

13 + 43 = (2020)
16 + 40 = (2020)
18 + 38 = (1202)
19 + 37 - (2020)
20 + 36 = (2020)
21 + 35 - (1202)
22 + 34 = (2020)

grundy(55)- 1(1###)

23 + 33 = (2020)
24 + 32 = (1###)
25 + 31 = (2020)
26 + 30 = (2020)
27 + 29 = (# # # #)
grundy(5 6) ~ 5(3131)
13 + 44 = (O # # #)
16 + 41 - (O # # #)
18 + 39 = (2020)
19 + 38 = (O # # #)
20 + 37 = (1313)
21 + 36 - (# # # #)

23 + 34 = (1313)
24 + 33 = (# # # #)
25 + 32 - (#313)
26 + 31 = (1313)
27 + 30 = (# # # #)
28 + 29 = (3131)
giundy(57)- 2(#202)
13 + 45 = (31#3)
16 + 42 = (31##)
18 + 40 = (# # # # I
19 + 39 = (3l##)
20 + 38 = (3131)

22 + 36 - (3131)
23 + 35 = (3131)
24 + 34 = (# # # # I
25 + 33 - (3131)
26 + 32 - (0202)
27 + 31 = (# # # #)
28 + 30 = (# # # # I
grundy(58)- 1(####)
13 + 46 = (2020)
16 + 43 = (2020)
18 + 41 = (1202)

22 + 35 = (O # # #)

21 + 37 = (# # # #)

19 4- 40 = (2020)
20 + 39 = (# # # # I

21 + 38 - (1202)
23 + 36 = (2020)
24 + 35 = (1202)
25 + 34 = (2020)
26 + 33 = (2020)
27 + 32 = (I###)
28 + 31 = (0202)
29 + 30 = (1313)
grundy(59)- 3(3131)
13 + 47 = (O # # #)
16 + 44 = (O # # #)
18 + 42 - (2020)
19 + 41 = (O # # #)

22 + 37 as (2020)

20 + 40 = (# # # #)
21 + 39 = (2020)
22 + 38 = (O # # #)
23 + 37 = (1313)
24 + 36 = (# # # #)
25 + 35 - (O # # #)
26 + 34 - (1313)
27 + 33 = (# # # #)
28 + 32 - (3131)
29 + 31 = (3131)
grundy(6 0) ~ 2(#202)
13 + 48 - (#313)
16 + 45 = (31#3)
18 + 43 = (# # # #)
19 + 42 = (31##)
20 + 41 = (3131)

22 + 39 - (3l##)
23 + 38 - (3131)
24 + 37 = (# # # #)
25 + 36 = (3131)
26 + 35 = (3131)
27 + 34 = (# # # #)
28 + 33 * (# # # #)
29 + 32 = (0202)
30 + 31 = (# # # # I
grundy(61)= 1(####)
13 + 49 = (2020)
16 + 46 = (2020)
18 + 44 = (1#31)

20 + 42 * (1313)
21 + 41 = (1202)
22 + 40 = (2020)
23 + 39 = (# # # #)
24 + 38 = (1202)

21 + 40 = (# # # # I

19 + 43 = (2020)

2

25 + 37 = (2020) 25 + 40 = (2020)
26 + 36 = (2020) 26 + 39 = (# # # #)
27 + 35 = (1202) 27 + 38 = (1202)
28 + 34 = (0202) 28 + 37 = (0203)
29 + 33 = (2020) 29 + 36 = (2020)
30 + 32 = (1313) 30 + 35 = (1###)
grundy(62)= 3(31##) 31 + 34 = (0202) .
13 + 50 = (0202) 32 + 33 = (2020)
16 + 47 = (O # # #) grundy(65)= 3(31##)
18 + 45 = (20##) 13 + 53 = (0202)
19 + 44 = (O # # #) 16 + 50 = (0202)
20 + 43 = (# # # #) 18 + 48 = (# # # #)
21 + 42 = (2020)
22 + 41 = (O # # #) 20 + 46 - (##31)
23 + 40 = (# # # #)
24 + 39 = (2020)
25 + 38 = (O # # #) 23 + 43 = (# # # #)
26 + 37 = (1313) 24 + 42 = (2020)
27 + 36 = (# # # #) 25 + 41 = (O # # #)
28 + 35 = (# # # #) 26 + 40 = (# # # #)
29 + 34 = (3131) 27 + 39 = (2020)
30 + 33 = (0202) 28 + 38 = (# # # # I
31 + 32 = (3131) 29 + 37 = (3131)
gnmdy(63)= 2(# # # #) 30 + 36 = (0202)
13 + 51 = (#313) 31 + 35 = (31##)
16 + 48 = (#313) 32 + 34 = (3131)
18 + 46 = (# # # #) grundy(66)= 2(1###)
19 + 45 = (31#3) 13 + 54 = (1313)
20 + 44 = (31##) 16 + 51 = (#313)
21 + 43 = (# # # #) 18 + 49 = (# # # # I
22 + 42 = (31##) 19 + 48 = (#313)
23 + 41 = (3131)
24 + 40 = (# # # #)

19 + 47 = (O # # #)

21 + 45 = (2 0 # #)
22 + 44 = (O # # #)

20 + 47 = (# # # # I
21 + 46 = (# # # #)

25 + 39 = (31##) 22 + 45 = (31#3)
26 + 38 = (3131) 23 + 44 = (31##)
27 + 37 = (# # # #) 24 + 43 - (# # # #)
28 + 36 * (# # # # I 25 + 42 = (# # # # I
29 + 35 = (# # # #) 26 + 41 = (3131)
30 + 34 = (# # # #) 27 + 40 = (# # # #)
31 + 33 = (# # # # I 28 + 39 = (# # # #)
grundy(6419 4(####) 29 + 38 = (# # # #)
13 + 52 = (2020) 30 + 37 = (# # # # I
16 + 49 = (2020) 31 + 36 = (# # # #)
18 + 47 = (1#31) 32 + 35 = (#202)
19 + 46 = (2020)
20 + 45 = (1###) grundy(67)= 4(2020)
21 + 44 = (1#31) 13 + 55 = (# # # #)
22 + 43 = (2020) 16 + 52 = (2020)
23 + 42 = (1313) 18 + 50 = (1###)

33 + 34 = (# # # #)

24 + 41 = (1202) 19 + 49 = (2020)

20 + 48 = (# # # #)
21 + 47 = (1#31)
22 + 46 = (2020)
23 + 45 = (1###)
24 + 44 = (1#3l)
25 + 43 = (2020)
26 + 42 = (1313)
27 + 41 = (1202)
28 + 40 = (0202)

30 + 38 - (1###)
31 + 37 = (0202)
32 + 36 = (2020)

grundy(68)= 3(31##)
13 + 56 = (0202)
16 + 53 = (0202)
18 + 51 = (# # # #)
19 + 50 = (0202)
20 + 49 = (3131)
21 + 48 = (# # # #)
22 + 47 = (O # # #)
23 + 46 = (##31)
24 + 45 = (20##)
25 + 44 = (O # # #)
26 + 43 = (# # # #)
27 + 42 = (2020)
28 + 41 = (# # # #)
29 + 40 - (3131)
30 + 39 = (2020)
31 + 38 = (31##)
32 + 37 = (3131)
33 + 36 = (0202)
34 + 35 = (31##)
grundy(6 9) ~ 2(1###)
13 + 57 = (1#31)
16 + 54 = (1313)
18 + 52 = (# # # #)
19 + 51 = (#313)
20 + 50 = (#313)

22 + 48 = (#313)
23 + 47 = (# # # # I
24 + 46 = (# # # #)
25 + 45 = (31#3)
26 + 44 = (31##)
27 + 43 = (# # # #)
28 + 42 = (# # # #)
29 + 41 = (# # # #)
30 + 40 = (#313)

29 + 39 = (# # # #)

33 + 35 = (1###)

21 + 49 = (# # # #)

3

31 + 39 = (# # # #)
32 + 38 = (# # # #)

34 + 36 = (# # # #)
grundy(70)- 4(2020)
13 + 58 = (# # # #)
16 + 55 = (# # # #)
18 + 53 = (# # # #)
19 + 52 - (2020)
20 + 51 - (# # # #)
21 + 50 = (1###)
22 + 49 = (2020)
23 + 48 = (# # # #)
24 + 47 = (1#31)
25 + 46 = (2020)
26 + 45 = (1###)
27 + 44 = (1#31)
28 + 43 = (0202)
29 + 42 = (# # # #)
30 + 41 = (I###)
31 + 40 = (0202)
32 + 39 = (# # # # I
33 + 38 = (1###)
34 + 37 a (0202)
35 + 36 - (# # # #)
grundy(71)- 3(31#3)
13 + 59 = (0202)
16 + 56 = (0202)
18 + 54 = (# # # #)
19 + 53 = (0202)
20 + 52 - (3131)
21 + 51 = (# # # #)
22 + 50 = (0202)
23 + 49 = (3131)
24 + 48 = (# # # #)
25 + 47 = (O # # #)
26 + 46 = (##3l)
27 + 45 = (20##)
28 + 44 = (# # # # I
29 + 43 = (3131)
30 + 42 = (# # # #)
31 + 41 = (# # # #)
32 + 40 = (3131)

34 + 38 a (31##)
35 + 37 = (31##)

13 + 60 a (1#31)
16 + 57 = (1#31)
18 + 55 = (0202)

33 + 37 = (# # # #)

33 + 39 = (# # # #)

grundy(72)= 2(1###)

19 + 54 = (1313)
20 + 53 - (1313)
22 + 51 = (#313)
23 + SO = (#313)
24 + 49 - (# # # #)
25 + 48 - (#313)
26 + 47 = (# # # #)
27 + 46 = (# # # #)
28 + 45 - (3131)
30 + 43 - (#313)
31 + 42 - (# # # # I
32 + 41 - (# # # #)
33 + 40 .= (#313)

35 + 38 = (#202)
36 + 37 - (# # # a)
grundy(73)= 4(2020)
13 + 61 = (# # # #)
16 + 58 - (# # # #)
18 + 56 = (# # # #)
19 + 55 = (# # # #)
20 + 54 - (2020)
21 + 53 = (# # # #)
22 + 52 = (2020)
23 + 51 - (# # # #)
24 + 50 - (1###)
25 + 49 = (2020)
26 + 48 = (# # # #)
27 + 47 = (1#31)
28 + 46 - (0202)
30 + 44 - (1#31)
31 + 43 = (0202)
32 + 42 = (# # # #)
33 + 41 - (1###)
34 + 40 a (0202)
35 + 39 = (2020)
36 + 38 = (# # # # I
grundy(74)= 3(31#3)
13 + 62 = (O # # #)
16 + 59 = (0202)
18 + 57 = (# # # #)
19 + 56 = (0202)

21 + 52 - (# # # #)

29 + 44 (# # # #)

34 + 39 = (# # # #)

29 + 45 - (# # # #)

20 + 55 = (# # # #)
21 + 54 = (# # # # I
22 + 53 - (0202)
23 + 52 = (3131)
24 + 51 = (# # # # I

25 + 50 = (0202)
26 + 49 = (3131)
27 + 48 = (# # # #)
28 + 47 = (# # # #)
29 + 46 = (3131)
30 + 45 = (# # # #)
31 + 44 = (# # # # I
32 + 43 5 (3131)
33 + 42 = (# # # #)
34 + 41 - (# # # #)

36 + 39 = (# # # # I
37 + 38 - (31##)
13 + 63 = (1###)
16 + 60 = (1#3l)
18 + 58 5 (0202)
19 + 57 - (1#31)
20 + 56 = (1313)

22 + 54 = (1313)
23 + 53 = (1313)
24 + 52 - (# # # #)
25 + 51 = (#313)
26 + 50 = (#313)
27 + 49 = (# # # #)
28 + 48 - (3131)
30 + 46 = (# # # #)
31 + 45 = (##3l)
32 + 44 = (# # # #)
33 + 43 = (#313)
34 + 42 = (# # # # I
35 + 41 = (#202)
36 + 40 - (1313)
grundy(76)- 4(2020)
13 + 64 = (# # # #)
16 + 61 a (# # # #)
18 + 59 = (# # # # I
19 + 58 = (# # # # I
20 + 57 = (2020)
21 + 56 = (# # # #)
22 + 55 = (# # # #)
23 + 54 = (2020)
24 + 53 S+ (# # # #)
25 + 52 = (2020)
26 + 51 - (# # # #)
27 + 50 = (3l##)
28 + 49 = (0202)

35 + 40 = (# # # #)

grundy(75)= 2(l###)

21 + 55 = (0202)

29 + 47 = (# # # #)

37 + 39 - (# # # #)

,
4

29 + 48 = (0202)
30 + 47 = (3131)
31 + 46 = (0202)
32 + 45 = (# # # #)
33 + 44 - (1###)
34 + 43 = (0202)
35 + 42 = (2020)
36 + 41 = (# # # #)
37 + 40 - (0202)
38 + 39 - (2020)
grundy(77)- 3(#313)
13 + 65 = (O # # #)
16 + 62 - (O # # #)
18 + 60 - (# # # #)

20 + 58 = (# # # #)

22 + 56 = (0202)
23 + 55 = (# # # #)
24 + 54 = (# # # #)
25 + 53 - (0202)
26 + 52 = (3131)
27 + 51 = (# # # #)
28 + 50 = (2020)
29 + 49 = (3131)
30 + 48 = (# # # #)
31 + 47 = (# # # #)
32 + 46 = (3131)

19 + 59 = (0202)

21 + 57 = (# # # #)

33 + 45 = (.2020)
34 + 44 = (# # # #)
35 + 43 = (# # # #)
36 + 42 = (# # # #)
37 + 41 = (# # # #)
38 + 40 = (# # # #)
grundy(78)= 2(1###)
13 + 66 = (1###)
16 + 63 = (1###)
18 + 61 = (0202)
19 + 60 = (1#31)
20 + 59 = (1313)
21 + 58 = (0202)
22 + 57 = (1#31)
23 + 56 = (1313)
24 + 55 - (0202)
25 + 54 = (1313)
26 + 53 = (1313)
27 + 52 = (# # # #)
28 + 51 = (3131)
29 + 50 = (1313)
30 + 49 = (# # # # I

31 + 48 = (##31)
32 + 47 - (# # # #)

34 + 45 = (##31)
35 + 44 = (##31)
36 + 43 = (1313)
37 + 42 = (a # # #)
38 + 41 = (0202)

33 + 46 = (# # # #)

39 + 40 - (# # # #)
grundy(79)= 4(2020)
13 + 67 - (#313)
16 + 64 = (# # # #)
18 + 62 = (2031)
19 + 61 = (# # # #)
20 + 60 - (2020)
22 + 58 = (# # # #)
23 + 57 = (2020)
24 + 56 - (# # # #)
25 + 55 = (# # # #)
26 + 54 = (2020)
27 + 53 - (# # # #)
28 + 52 = (0202)
29 + 51 = (0202)
30 + 50 = (3131)
31 + 49 = (0202)
32 + 48 = (0202)

21 + 59 = (# # # #)

33 + 47 = (l###)
34 + 46 = (0202)
35 + 45 = (#31#)
36 + 44 = (# # # #)

38 + 42 = (2020)
39 + 41 = (1#20)
grundy(80)- 5(####)
13 + 68 = (O # # #)
16 + 65 = (O # # #)
18 + 63 = (31#3)
19 + 62 = (O # # #)
20 + 61 = (# # # #)
21 + 60 = (# # # #)

23 + 58 = (# # # #)
24 + 57 = (# # # #)
25 + 56 = (0202)
26 + 55 = (# # # #)
27 + 54 = (# # # #)

29 + 52 = (3131)
30 + 51 = (# # # #)

37 + 43 = (0202)

22 + 59 = (0202)

28 + 53 = (##20)

31 + 50 = (##20)
32 + 49 = (3131)
33 + 48 = (##20)
34 + 47 = (# # # #)

37 + 44 - (# # # #)

35 + 46 - (31##)
36 + 45 - (2020)
38 + 43 = (# # # #)
39 + 42 = (0202)
40 + 41 - (# # # #)
grundy(81)- 2(1###)
13 + 69 = (I###)
16 + 66 = (1###)
18 + 64 = (0202)
19 + 63 - (I###)
20 + 62 - (1###)
21 + 61 = (0202)
22 + 60 = (1#31)
23 + 59 - (1313)
24 + 58 = (0202)
25 + 57 = (1#31)
26 + 56 = (1313)
27 + 55 = (0202)
28 + 54 - (3131)
30 + 52 = (2020)
31 + 51 = (3131)
32 + 50 - (# # # # I

34 + 48 = (##31)
35 + 47 = (2031)
36 + 46 = (# # # #)
37 + 45 = (##3l)
38 + 44 = (##31)

40 + 42 = (# # # #)
grundy(82)- 4(####)
13 + 70 = (#313)
16 + 67 = (#313)
18 + 65 = (20##)
19 + 64 = (# # # #)
20 + 63 = (# # # #)
21 + 62 = (2031)
22 + 61 = (# # # # I
23 + 60 = (2020)
24 + 59 = (# # # #)

26 + 57 = (2020)
27 + 56 = (# # # # I

29 + 53 = (1###)

33 + 49 = (# # # # I

39 + 43 = (# # # #)

25 + 58 = (# # # #)

28 + 55 = (20##)

29 + 54 = (0202)
30 + 53 * (# # # #)
31 + 52 (0202)
32 + 5 1 = (0202)
33 + 50 = (3131)
34 + 49 = (0202)
35 + 48 - (# # # # I
36 + 47 = (# # # #)
37 + 46 = (0202)
38 + 45 = (#313)
39 + 44 * (1313)
40 + 43 = (0202)
41 + 42 = (1#20)
gmmdy(83)= 5(####)
13 + 71 = (0#20)
16 + 68 * (o # # #)
18 + 66 = (31#3)
19 + 65 = (O # # #)
20 + 64 = (#313)
21 + 63 = (31#3)
22 + 62 = (O # # #)
23 + 61 = (# # # #)
24 + 60 - (# # # #)
25 + 59 = (0202)
26 + 58 = (# # # #)
27 + 57 = (# # # # I
28 + 56 = (##20)
29 + 55 - (# # # # I
30 + 54 = (#313)
31 + 53 = (##20)
32 + 52 = (3131)
33 + 51 = (# # 2 0)
34 + 50 = (##20)
35 + 49 - (31##)
36 + 48 = (##20)

38 + 46 = (31##)

25 + 60 = (1#31)

37 + 47 = (# # # # I

39 + 45 = (0202)
40 + 4 4 = (####I>
41 + 43 = (# # # # I
grundy(84)= 2(1###)
grundy(85)= 4(####)
grundy(8 6) ~ 3(####)
grundy(87)= 7(20##)
grundy(88)= 4(#313)

6

OTHER GAMES

1 1 1

The computer’s calculations have demonstrated regularities in some other games. For
the most part, these regularities are not dramatic enough to work into a complete analysis,
nd in many cases they do not even continue as far we have data. Some of these games

have been treated by Yamasaki [131 and Ferguson [71.

00022133000 ‘ I . . .
I /

The game of Tins is played with rows of tin cans. The legal move is to remove Two
adjacent cans from the INterior of a row (splitting that row in two). In the octal notation
of Guy and Smith [lo] , Tins is the game .04.

The computer’s calculations show a remarkable regularity which is not mentioned in
WW, and which is not reflected by the normal play result. In order to make this regularity
easier to follow, table iv shows the go values of the heaps from size 1 to 60 in the game .04:

17

In the game which is called Guiles in WW (octal code .15; rules as in .04, except that a
row of length 1 or 2 may also be removed, analyzed extensively by Guy and Smith [lo]),
Berlekamp, Conway and Guy have observed that many of the different heaps are equal.
It is not surprising to find that the computer’s calculations have shown a strong tendency
towards repetition of the genus values of the various heaps. In fact, we find that the genus
sequences very nearly repeat at intervals of 10 starting from the row of 9 pins, in that
the genus sequence of the row if n pins and the row of n + 10 pins always match, except
possibly for the values go and 91. These discrepancies seem to damp out, and we find that
the genus sequences of heaps of 22 or more counters (as far as we have data) match up
exactly in intervals of 10, except that the heaps of sizes 47, 49 and 50 do not match the
heaps of size of sizes 57,59 and 60. Perhaps these and other regularities are best illustrated
by the genus sequences themselves, as shown in the following table.

n 1 2 3 4 5 6 7 8 9 10
go(n + 0) 031 031 120 031 031 202 202 031 202 202
gO(n+10) 031 031 120 #31 #31 202 202 202 202 1#2
go(n+20) #31 #31 120 #31 #31 202 1#2 202 1#2 1#2
go(n+30) 131 #31 120 #31 #31 202 1#2 202 1#2 1#2
go(n+40) 131 #31 120 #31 #31 202 1#2 202 1#2 1#2
gO(n+50) 131 #31 120 #31 #31 202 202 202 202 202
gO(n+60) 131 #31 120 #31

The first three digits of genus sequences for Guiles heaps

The Octal Game .17
In the octal game .17, (in which the legal move is to remove any two adjacent counters
from a row, or to remove any row of exactly one counter) we find that the go values show a
tendency to recur at intervals of 7 (this is available from the computations done in WW).
Here the computer’s calculations show us that this pattern does not continue, since it
breaks down at 27 (and every seventh game thereafter, as far as we have data) and again
at 44. The fact that the recurrence occurs only in the go values makes it unsurprising that
this trend is unstable.

n 0 1 2 3 4 5 6 .
go(n0) 1 0 0 1 2 0 3
90 (n7) 1 0 0 1 2 0 3
g o (n 1 4) 1 0 O 1 2 O 3
go(nal) 1 0 0 1 2 0 #
go(n2a) 1 0 0 1 2 0 #
90 (n35 1 1 0 0 1 2 0 #
g O (n 4 2) 1 0 0 1 2 0 #

go values of .17

18

Errors in Winning Ways
Not only has the computer allowed us to work out more genus sequences than were printed
in WW, it also has revealed some errors in the computations printed there.

Octal heap WW correct
code size genus genus

(sharp) (blurry)
.14 21 O(620) O(02)
.16 19 2(31) 1(##20)
.6 29 2(20) 2(0#20)
.6 30 O(02) 0(#20)

.72 15 2(20) 2(1#20)

All of these corrections can easily be verified by,hand in a few minutes, except for the
two errors in .6. I have verified by hand (a calculation too lengthy to be included here)
that the heap of 29 counters in .6 is a P position, as indicated by the computer. The genus
sequences for .6 appear in appendix I under the code .37. Guy and Smith have shown that
a heap of n + 1 counters in .6 is equal to a heap of n counters in .37.

See also the section in the chapter ‘An algorithm for Generalized Genera’ about more
errors in Winning Ways.

19

A BIGGER GENUS SEQUENCE

When we were considering the genus sequence earlier in this work, and were deciding
what games to include in the base set X , the condition of descent closure forced us into
the choices of 2 and 1, and the condition of additive closure mad us set X = (1 ,2) . If we
wish to work with a larger base set, say (1,2, a) , we now have an infinite number of choices
for a, which include any games all of whose options are in the set (1 ,2) . Some of the more
common such games are {4 ,2 , l}: (4, l}, and {4,0}.

Let us consider how we might write such a genus sequence. Let X = { 1,2 , a } for some
game a with u’ E {1,2} . Nai’vely, for a game G, we want to write down the outcomes of
all sums G + i u + j . 2 -i- k 1. However, we have already worked out a much shorter way
to write the outcomes H + j - 2 -k k - 1 for any game H ; thus all we need is a sequence of
genus sequences, one of each of G i i a. For example, since we know that the genus of 0
is 1202, and that of (4, l } is l+20 , and we can compute the genus of (4 ,1} + (4 , l) which
is also 1202, we have that for u = (4, I}, the (1,2, u) genus of 0 can be written as

(1202) (1#20) (1202) . . .
Unlike the blurry genus, we do not know that this will necessarily be an ultimately

periodic sequence; hence it seems that we are dealing with a much more unwieldy sequence
here.

The first move I will make towards tidying up this sequence will be to shorten the
notation of the blurry genus sequence.

Returning to the sequence of 1 ’ s and P’s which underlie the blurry genus sequence,
we notice that all we are really interested in is the location of the Pentries. So, for the
string

NPNNPKNNPNXK
0 1 2 3 4 5 6 7 8 9 ...

All that we need to remember are the locations

1 ,4 ,8 ,12 ,...

However, since we know that the sequence of 1”s and P’s has ultimate period 4, we know
that this sequence has ultimate arithmetic period 1, saltus 4; with this in mind, we need
only write

1 4

These sequences are usually very short, often only one or two entries long. Since it is easier
to write long sequences horizontally, we will write these short sequences vertically, thus:

4
1

If the sequence of P’s and N’s has finitely many F’s,

20

NPNNNNNN.. .
then we will write the symbol 00 to indicate that the next (unwritten) entry never

occurs, thus:

Now the (1 ,2 ,a) genus of 0 looks like

00
1

464
111”’

The algorithm for computing the genus of a game given that of its options in this
vertical notation is most easily described in terms of admissible sequences, i.e., those
sequences which can occur as genus sequences of games. In this notation, the admissible
sequences are the strictly increasing sequences of nonnegative integers, such that the integer
which follows n in the sequence is greater or equal to n + 3 for n odd, and greater or equal
to n + 4 if n is even. (This rule reflects the fact that in the old notation we were not
allowed to follow a 0 or a 1 by a 0 or a 1). A sequence also must have ultimate arithmetic
period 1 saltus 4 to be admissible. We will show later that all admissible sequences do
arise as genus sequences of actual games. Now the rule for computing the genus of a game
given the genera of its options is as follows:

The genus of 0 is :. For G # 0, the genus of G is the lexicographically first admissible
sequence which contains no integer contained in the genus of any option of G.

Notice the similarity between this operation and the mex operation defined earlier.
For this reason I will call this function rnez!.

It is easy to see, by casting this rule in the notation of strings of O’s, 1’s and #’s, that
this is the same rule as given earlier.

We are now in a position to present an algorithm for computing the (1 ,2 ,a) genus
sequence, via analogy with the algorithm for computing the (1,2) genus sequence. If we
write the (1 ,2 ,a) genus of G as a sequence of (1,2) genera, which we will write as ho(G),
h,(G), hz(G), etc. (just as we wrote the (1 ,2) genus of G as a sequence of (1) genera,
which we called gO(G), gl(G), etc.), then we have the following rule:

ho(0) = :. If G # 0: then ho(G) is the mex! of the ho(G’).
For all G, h,+l(G) = mex!{h,+l(G‘),h,(G + a’)].

Of course, since a’ E (1 ,2) , the computation of hi(G + a’) is just a shift of h,(G). For
example, if hi(G) = z , and a’ = :4, then hi(G + a’) = 1, i.e., subtract 4 from 0,5,9,13,. . . ,
to get 1,5,9,13,. . .; or, in vertical notation, 1.

I will now show a prolonged calculation using this notation and algorithm, not only
because this uses everything which I have mentioned so far, but also because this calculation
itself is of some interest.

For this calculation, let a = {4,1}.
First, I calculate the (1 ,2 , a) genus of 0:

carries { x i 5 7
0 0
0 2

options of 0
genus of 0 4 6 4

1 1 1

21

g o 2
3 1 3

5 7 5 7
0 0 0 0
2 4 2 4
0 2 0 2

: 1 3 1

3 5 ; 2
2 0 2 4

5 7 5 7 5
0 0 0 0 0
7 1 3 1 3 1

From this we can easily compute the (1,2,a) genus of 1 and 2, by simply shifting all
component (1,2) genera by 1 and 2 respectively:

5 7 5
0 0 0 ...
2 4 2 ...

Now the genus of 2+ = (2):

1 3
0 2

2 4 2
0 2 0

Now the genus of Go = (1,2,2+}

And H = { 1; Go}

Notice how, as in the (1,2) case, all the genus sequences are ultimately periodic with
y take longer and longer before the periodicity starts. Any hopes in

is direction are shattered by the genus of J = (1, H } :

15 5 7 9 1 1 1 3 8
0 0 2 ; ; :

0 2 4 7 ; 1:
0

5 7 5 7 5 7 5
0 0 0 0 0 0 0

2 4 ; ; : ; :

1 1 3 ; 7 : 'r 1 4 1 G

2 1 2

4 G 8 i o 1 2

22

8 G 2 4 ; 3 1

It is easier to see how this trend continues if we write this genus as an array of
utcomes. This array is laid out in exactly the same way as the genus sequence written
bove. The numbers written horizontally across the bottom indicate the numbers of copies
f the game a, while the vertical direction indicates an adder. So the entry in column 6
ow 5 indicates the outcome of 6 a+ : 5 . I have found that this diagram is easier on the
yes if I use P for Pand - for N.

2 o p . p . p . p . p
1 9 p . p .

17 * . P . P * P

15 * . P . P * P .
14 * P * P * P *

13 * P . P - P * P

11 p . p . p . p .
l O . P . P
g P . P . P . P - P
8 P * P ’ .
7 . . ! . p . p . p . p . p .

1 8 . p . p . p . p
.

1 6 p . p . p . p
.

.

1 2 P . P . P ; - -

.

6 . p
5 . . p
4 p * P . P * P * P . P
3 i . p
2 . . . p . p . p . p . p .
1 P P . P . P - P . P . P . P
0 .

0 1 2 3 4 5 6 7 8 9 ~ ~ ~ ~

/

.

The pattern that keeps this from being a periodic sequence is the highlighted strip of
Upositions which goes diagonally up to the right through the top of this diagram. It is
easy to see that this continues, and hence no two columns of this array match.

An example of this sort demonstrates that the (1 , 2 , a) genus sequence will not be as
seful as the (1,2) genus, since we cannot be certain that this will be a periodic sequence,
hich would allow us to write it conveniently in a small space.

It is easy to see how we could continue to define genus sequences for larger and larger
ts X . If we choose a game b such that b’ E (1 , 2 , a) , then we can define the (1 , 2 , a , b)

enus sequence as a sequence of (1 ,2 ,a) genus sequences. The rule for computing such
genus, for a game G, given the genera of the options G‘, is also easy; we write the
, 2 , a, 6)-genera of G’ out in rows of (1 , 2 , a) genera, and use the (1 , 2 , a) genus algorithm

n the columns (analogous to the way we used mex! on the columns of the (1 , 2 , a) genus,
nd mex on the columns of the (1,2) genus). To each new column we carry the result
f the previous column, shifted by all of the options of b (since we chose b‘ E (1 , 2 , a) ,
ese computations will indeed by simple shifts). What is not so easy to see is how we

23

n conveniently write a (1,2, a, b) genus sequence, which we should, perhaps, refer to as a
nus array. The problem becomes worse and worse as we choose larger and larger sets for
. The genus sequence continues to be useful for conceptualizing the information we need

now about sums of games as we consider larger sets X , but because it is impossible to
te the genus sequence in many dimensions, I will abandon it in favor of what I will call
generalized genus statement.

24

THE GENERALIZED GENUS STATEMENT

Although a quick glance at table iii will allow us, during a high-stakes round of
Grundy's game, to declare confidently that we can win the single heap of 76 coins (our

ove!), it is not so effective at making good that boast, because it does not tell us what
moves to make (beyond the first). Of course, the computer did have the data available to
ell us the right moves, but to print enough data of this sort to allow us to play Grundy's

game effectively would yield a completely unwieldy table. Even if we did print such a table,
would be useless for telling us whether we can win a sum of 8 heaps of size 25 (say). In

AG, Conway states a result which will answer questions of this sort €or Grundy heaps
up to 27 coins. I will work out a method of making such statements so that the com-
ter can tell us these things. In order to do this, I will introduce the generalized genus

If two games G and H have the same outcome, I will write G - H . We say that G=H
G + T - H + T for all games T. If G + H - H + T for all T in some set of games X ,
en I will write

G E H (X) (1)

This notation allows us to express conveniently several things about genus sequences. For
example, when X is closed under addition and descent, we can define the X genus sequence
as above, and (1) tells us that G and H have the same X-genus sequence.

Even if the set X is not closed (under addition, descent, or both), a generalized genus
statement may still be interpreted in terms of genus sequences. Consider the statement

2 + 2 = 0 ((1 , z) + 1 + 2) (2)

his says that the (1,2) genus of the game 1 + 2 has period 2 starting immediately, or
equivalently, that the (1,2) genus of 1 has period 2 starting at the second term. Of course,
hese two interpretations are reflected in two different ways of writing (2):

2 + 2 + 2 = 2 ((1 , 2) + 1) (2')

This is an example of the sorts of operations we can perform on the genus statement.
n Lemma 3 I catalogue the simple transformations we will use for genus statements.

i) G + S - H + S (X) +=+ G r H (X + S)
iia) G E H (X) a n d G G H (Y) c G r H (X U Y)
ib) G 5 H (X) ====+ G z H (W) for any W C X
iii) G E H (X) a n d H E J (X) ==+ G r J (X)
iv) For S E (Y) , G H ((Y) + X) ==+ G + S z H + S ((Y) + X)

Proof. Trivial.

(iib) is just a special case of (iia), but since we will use the form (iib) so often, I have
ritten it out explicitly.

25

Periodicity in Genus Sequences
We have seen that the multi-dimensional genus sequence has not retained the splendid pe-
riodicity properties enjoyed by the (1,2) genus. However, experience calculating hundreds
of such genus sequences (to be discussed later in this work) has shown that non-periodic
genus sequences are quite rare. I will now present a result which will tell us when a genus
sequence has begun to be periodic. Armed with this result, I will assemble an algorithm
to compute generalized genera, similar to the one which computes (1,2) genera. Since we
can tell when a genus is periodic, the algorithm can guarantee us that it has not run into
trouble (i.e., with a non-periodic genus).

One note before I proceed; although the genus sequence is intuitively satisfying, it
ds to become unwieldy in an abstract discussion. For this reason, I will make all

ecise statements in terms of the genus statement, with occasional comments on the
rresponding genus sequence interpretations.

In the example above where we computed the (1,2, u) genus of H = (1, {I, 2,2+}},
second time that we got as a result of a column computation, it was obvious that
answer would continue to repeat 7;:: . . . from that point onward. Lemma 4 casts this

servation into the language of genus statements, and makes specific what conditions
s t be met by the games involved so that this periodicity will occur.

Lemma 4. (One-dimensional genus periodicity): Let S, N be sets of games, A a game,
, m positive integers such that

i) t . A - 0 ((S) + N + m . A)
ii) A’ E (S) for all options A’ of A
iii) (A , S) and N are closed under descent

then
t - A r O ((A , S) + N + m * A)

In terms of genus sequences, this tells us that, subject to the conditions on A , S and N ,
nce the sequence repeats itself, it will continue to do so in a periodic fashion. If we set
= 2, m = 2, A = {4,1}, N = [HI , and S = (1 ,2) (by [H] I mean the descent closure of
; that is, H , the options of H , the options of the options of H , etc.), then we get the
ample which we worked out earlier for the (1 ,2 , a)-genus of H , the conclusion stating,
we observed in the example, that the final sequence is periodic.

The conclusion is clearly equivalent to the statement that for all s E (S), h E N , n 2 0

n . A + s + h + m . A - nt A + s + h + m . A
‘

y nt we mean the smallest nonnegative integer congruent to n
Choose n - A + s + h + m a A a simplest counterexample.

(mod t) .

n - A + s + h + m . A + n t . A + s + h + m . A

26

If n = 0 (mod t) , I claim that

n - A + s + h + m - A - s + h + m - A

xamine the options of the left hand side,

A ’ + (n - 1) . A + s + h + m - A - A ’ + (t - 1) - A + s + h + m - A
and n - A + (s + h)’ + m - A - t - A + (s + h)’ + m - A

both by the inductive hypothesis. But the right hand side of these similarities consti-
te all options of t - A + s + h + m - A , i.e., for any option of n - A + s + h + m . A we can
d an option of t - A + s + h + m - A with the same outcome. Hence,

n . A + s + h + m . A - t . A + s + h + m . A - s + h + m . A

nd n A + s + h + m - A was not a counterexample after all.
If n 8 0 (mod t) , I claim that still

n - A + s + h + m - A - n t - A + s + h + m . A

ince the options of the left hand side

A‘ + (n - 1) A + s + h + m - A - A‘ + (n - l) t - A + s + h + m‘. A

n . A + (s ~ h) ’ + r n . A - n t - A + (s + h) ’ + m - A

have the same outcome as the options of the right hand side, so again n - A + s + h + m . A
is not a counterexample.

If we view a &dimensional genus sequence (i,e., one which characterizes classes over
me set (GI, Ga, . . . Gd)) as a sequence of (d- 1)-dimensional sequences, this lemma allows
to conclude statements about the periodicity of this sequence. However, we often find

at a high-dimensional symbol is periodic in several directions at once, in the sense that
cks of values repeat themselves. By analogy, we might expect that once the boundaries
such a block match, we can guarantee that the sequence is periodic (see fig. 1). Indeed
is is the case. Most of the complication in the proof arises from the need to check the
nditions on A , S , and N to allow us to use lemma 4.

When we discuss an n-dimensional genus sequence, which we may think of as an
-dimensional ‘cube’ filled with outcomes, it will be convenient to refer to the (n - 1)-
imensional faces of this ‘cube’, as well as various cross-sections. The outcomes in the

cube’ refer to sums of all n games. Each (n - 1)-dimensional face of the ‘cube’ refers to
ms of (n - 1) of these games. For the (gl, g2,. . . g,)-genus sequence: we define Fnli to
the set of games referred to by the (n - 1)-dimensional face for which the sums do not

nvolve the game g2 - Fnli is given by the formula

27

\ 5 \ 2 5 2 i o I

E 2 5 2

a +
:F 0 1 2 5 2 T

i _ ~ __J

a +
Let a = {4,2,1} and 6 = {a : 2,a,2,1}. The (1,2,a)-genus of f =
{0,3,6,7} begins to show periodicity by the 3fd term; Lemma 2 tells us
that since the third entry matches the 3 - 2 = lSt entry, this sequence is
periodic of period 2. The (1,2, a, 6)-genus of f (shown as a 2-dimensional
array of (1,2)-genus sequences) begins to show periodicity by the 3fd
column, Z n d row. The 3'd column matches the first, and the second row
matches the zeroth. Can we conclude that the sequence is henceforth
periodic in both directions?

The entries corresponding to the sets B2,1 (vertical) and B 2 , 2 (hor-
izontal) are highlighted.

fig. 1

hen we suspect that the (gl, 92,. . . g,)-genus sequence is periodic in the i th direction of
riod p i which begins after s i entries, we wish to show that any values beyond pi + s i will
t concern us. Hence I will use B, ; to indicate this Dart of the face F+.

refer to cross-sections of this cube, we can add appropriate multiples of
e games; for instance, the cross-sections parallel to Bn,i refer to the sets Bn,i,Bn,i + gi,

28

I

eorem 111.
For a set G, = { g l , g 2 ,... gn} of n games, denote by Gi the subset {g1,g2 ,... gi).

ppose that for some sets of games T , N and some integers si, pi 2 0, (1 5 i 5 n) ,

i) pi * gi
i) g i fit together in a cascade fashion, i.e.,

O ((t) + N + si - gi + Bn,i) (I l i L n)

iii) (T ,g l) and N are closed under descent.

p . I * g 2 - ' = 0 ((T , G,) + N + si - g E) 1 5 i 5 n

First, we notice that because of the cascade property, (T, Gi) is closed under descent

Proceed by induction on n. For n = 1 , this is just Lemma 4.
For n > 1 , we have that G,-1 satisfies all of the conditions in this theorem, so by

r all i , not just i -= 1.

duction we may conclude that

Pa * gt 5 0 ((T , G,- 1) + N + s, * 92) l < i < n (1)

Now I claim that

PZ - g 2 f 0 ((T,G,-i) + N + sz - g z + [(s , + p ,) -gn]) 1 5 i 5 n - 1 (2)

If not, then choose k smallest such that

p a * g z ~0 ((T , G . - l) + N + ~ z . g z + [k . g .I) 1 2 i 5 n

1s. Now we know that 0 < k 5 p , i- s,. We want to work out an expression for [k.g,]

Since (k - g,)' E (k - 1) gn + (T , G , - I) and (T , G,- I } is closed under descent, we
t we can handle.

Now, by minimality of k we have that

Pi * Qz 0 ((T , Gn- 1) + S, . gi + N + [j g n j) I 5 i 5 n V j < k (4)

29

and by Lemma 3 (iia),

by Lemma 3(iib)

Lemma 3(iib) was applicable because the base set of (5) is a subset of the base set of

Since k 5 s, + p,, we have that B,-l,i + k - gn c Bn,i, so from (i) we have
(4)-

pi * g i 0 ((T) + S i * g i + N + Bn-1,i + k * g n) (6)

We can now apply lemma 3(iia) to congruences (5) and (6) to obtain

Now, from (3) and Lemma 3(iib) we have

contrary to our choice of k. This proves (2).
We can specialize (2) to tell us that

So that for any a E (Gn- l) , there exists a Ub E Bn,, such that

and

30

From (i) we have

Pn * g n 0 ((T) + N + sn 'gn + o b)

since ob E Bn,n.
Combining these together we get

-
0 + pn * gn o b + Pn * gn = ob 0 ((T) f N + sn * gn)

or equivalently,
pn 'gn E 0 ((T,gn-l) + N + sn '9,)

We check that (T , G,) and N are closed under descent, so we can apply lemma 4 to
obtain

P, * gn = 0 ((T , G n) + N + s, - gn)
and hence,

pi - g i s 0 ((T,G,) + N + s; .gi) 15 i 5 n

There may be some concern about the applicability of this theorem because of the
complicated nature of its hypotheses. However, the conditions of descent are almost always
satisfied. In fact, any nim-like game will automatically satisfy these conditions. The
options of any heap are just sums of earlier heaps (hence these heaps satisfy the cascade
property). If we let T = N = {0}, and let g1 be the heap of size 1, then (T,gl) and N are
closed.

31

AN ALGORITHM FOR GENERALIZED GENERA

Although Theorem I11 will not tell us that all genus sequences are periodic, it is very
seful in computing those which are. In fact, examination of appendix I1 shows that no
eap in any octal game shown has a non-periodic genus. Appendix I1 was prepared by
e following algorithm, which exploits theorem 111, and the way in which the octal games

Since this algorithm is geared towards octal games, we will refer to fundamental
ositions as heaps, and will denote the heap of a' counters as hi, and the set of positions
h l , , h2, . . .hi) as Hi.

automatically satisfy the hypotheses.

For each hi, do the following:

Assume that the (l,2,H2-1)-genus of the game 0 is known, i.e., we know the (1,2)-

Look up all the options of hi in this array, and compute the (1,2)-genus of hi.

Check whether hi is an adder (as before);

If not, then compute the (1,2)-genus of all sums of hi and games in Hi-1, i.e.: compute
e (1,2, H,-l)-genus sequence of hi, h; + hi, etc. until a match is found in this sequence.

y theorem 111, this gives us the (1,2, Hi)-genus of 0.

enus of all sums of heaps smaller than hi.

The performance of this algorithm does not seem as impressive as that of the algorithm
r the blurry genus, since we cannot give results for very large heaps. The results of
nning this algorithm on the octal games from WW are tabulated in appendix 11.

For the games this algorithm does treat, the information we gain is very impressive.
anks to theorem 111, we know the outcome of arbitrary sums of the positions tabulated
any column of appendix 11. This is one step towards giving a complete solution to a

e; often we find (as in the case of the game of Knots, which will be treated in the next
ion) that we have some rule for determining the outcome of a position provided that it

ntains at least one large heap. The output of the generalized genus algorithm can help
with the sums of small heaps.

Even when a complete solution is not obtained, the data in appendix I1 will guide us

Suppose we are playing the game of Officers from WW (the octal code for officers is
37; see page 5 of appendix 11), and we are presented with the followihg 10 heap position:

hile playing the games which it treats. This is best shown by an example.

2 7 10 10 11 11 11 11 11 13

From appendix I1 we find that the officers heaps of 2 and 7 counters equal *2 and *1
espectively. For the heap of 10 counters, we find the line

10 0,2 index # 2.

32

The first part of this line tells us that we may replace 2 + 0 heaps of 10 counters by 0
such heaps. Similarly, the line for 11,

11 2 , l index # 3,

tells us that we may replace 2 + 1 heaps of size 11 by 2 such heaps. We have reduced
our original sum to the following sum:

*3111113 y 3 i t I I 17

The line for 11 gives an ‘index’ of 3 for 11, and the line for 13 gives index 2. We use
these indices in the next part of the table for Officers (.37). The remaining sum has 2
index 3 games and one index 2 game, so we look for the line in appendix I1 with a ‘2’ in
column 3 and a ‘1’ in column 2 (and a 0 in column 1, since we have no index 1 games).
This gives us the genus (####), so we know that this is an A’ position.

A reasonably simple search through the options of our original sum reveals the option

2 7 9 10 11 11 11 11 11 13

Since heaps of size 10 and 13 are both index 2, we may cancel them in pairs as we did
eaps of size 10. This leaves us with the sum

*391111 43 4 l i i l

We look up the line with 1 in column 1 (9 is index 1) and 2 in column 3 (11 is index
33, to find the genus (3131), so this sum is a P position, and is a correct move to make.

33

Errors in Winning Ways
In chapter 13 of W W, Berlekamp, Conway and Guy state that when computing the genus
of a sum of heaps in Grundy’s Game, we can pretend that the various heaps are equal,
according to the following relations and addition table:

G13= G16= G19= G22= G25= a (say)
G18= G21= G24= G27= b
G20= G23= G26= c (say)

(say)

a + a = O
b + b = O

c + c + c = c + c

1431 4313 3131
0564 5646 4646

The computer has verified this principle for the blurry genus. However, for the sharp
enus, this statement is not true.

Consider the sum G18 + G20 + G13 + G25. The above relation tells us that G13 and
25 should be interchangeable, so we expect that

G18 + G20 -t G13 + G25 5 G18 + G20 + G13 + G13 ((1,2) + nimheaps)

We can also pretend that a + a = 0, so we expect this sum to have the same genus as
18SG20, which is 4(564). However, G18+G20+G13-t G25 has G18-t G20+G13+G20+G5
an option, which has sharp genus 5(5757), which matches 4(564) in the first place. The

tual sharp genus of this sum is 4(64964) which, of course, in blurry notation, is exactly
e same as 4 (564).

34

THE GAME OF KNOTS TIES UP ALL GENUS SEQUENCES

We can use the information produced by the generalized genus to help us obtain a

The game of Knots is played with bits of string tied end to end, and a pair of scissors.
knots are treated the same, since they join two distinct pieces of string. There are two

ts of legal moves: one involving only a string and the other involving the scissors and a
g. The first sort of move is to untie one of the knots (separating one length of string
two). The other is to use the scissors to cut a string between knots (also separating

string into lengths). In the octal notation of Guy and Smith, this is the game 4.7.

omplete solution of the game of Knots.

making a move in Knots

As mentioned in WW, the genera of the strings of Knots look much alike, except
at they take longer and longer to settle down. This trend does continue. This is a
nsequence of the following rule, which will determine the outcome on any position in
nots (we denote a string of n knots as Sn) :

We state this rule in terms of the tameness t (n) and wildness w (n) of S n as given by
e following table:

n = 0 1 2 3 4 5 6 7 8 9 ...
t (n) = 0 0 1 0 1 2 3 4 5 6 ...

w (n) = 0 0 0 o 0 1 0 1 2 3 . . .

For n 2 3, t (n) = n - 3 , for n > 6 ,w(n) = n - 6. For all n, we have that t (n) 2 n - 3,

For a Knots position K , let 2 nl 2 . . . > 0 be the number of knots in each string.
e may assume that every string has at least one knot, since no play is possible from a

and w(n) 5 max(0,n - 4) .

tring with no knots.

Let A = w(no) - C t (n z)
i > O

35

E (K) = number of strings with an even number of knots
D (K) = number of strings with an odd number of knots

The outcome of K is determined by the following rule:

If every string has length 1 or 3, then K is a P position if and only if there is an odd
number of strings. (The ‘short strings proviso’).

If there is any string of some other length, then

A 5 0 +- o (K) = P iff E and D are both even
A = 1 +- o(K) = X
A 2 2 +- o(K) = P iff E and D are both odd

Proof.
It suffices to show that from each position which we claim to be a X position, we can

make a correcting move to one of the positions we claim to be a P position, and that there
is no pervert ing move from any position which we claim to be a P position to any other
such position.

We note that the computer has verified this rule for strings with fewer than 9 knots.
Hence we need only treat positions with a t least one string of 9 or more knots. In particular,
any option of such a position has at least one string with 4 or more knots, and we can
safely ignore the small heaps proviso.

First we show that there are no perverting moves. For any position we list as P we
have E E D (mod 2) . We treat the available moves in two cases.

First, we may separate a string into two non-trivial parts (either with the scissors or
by untying a knot somewhere in the middle of a string). We notice that all P positions
have a n even number of strings. Such a move yields one more string, and hence cannot
link a P position to another P position.

Second, we may untie a knot at the end of a string. No matter which string this is,
we change the parity of both D and E , and change A by at most 1, and again the result
is not one of the listed P positions.

Now we show that from any listed N position, we can correct to a listed P position.

We now treat two cases,

i) n1 5 nr - 2 (This includes the case when K consists of 1 string-only)
ii) n o - 1 5 nl 5 nl)

Case (i), nl 5 no - 2
First we find a correcting move from any position for which D or E is even, but not

both D and E are even.
For no even: no = 2 m , the moves in Sno to S h + S m and Sm + S (m - 1) change

the parity of E and D respectively. We see that for both options, A 5 0. Since a position

36

ith A
hich exactly one of D and E is even.

0 is P if both D and E are even, one of these moves will correct a position for

For no odd, similar remarks apply for S m + S(m + 1) and S m + Sm.
Next we correct positions for which both D and E are odd, and A 5 1. The move

m Sno to S(no - 1) changes the parities of both D and E , and reduces A by 1. Again
s option has both D and E even, A 5 0, so it is listed as a P position.

Finally we correct positions for which both D and E are even and A 2 1. We treat
parately the two cases

a) ni = 1 or 3 for all i > O
b) There exists some ni E {2,4,5,6,7, . . .} (i > 0)

In case (a), since no 2 9, we find that w(n0) 2 3 and A 2 3. The move from Sno to
(n o - 1) changes the parities of both D and E , and decreases A by 1, so that this option
as D, E odd, A 2 2, hence it is listed as a P position.

In case (b), the play from Sni to S(ni - 1) increased A by 1, while changing the
arities of both D and E . Hence for this option D and E are odd and A 2 2, so it is a P

Notice that the only occasion when we used a move in Sni for i > 0 was the final case
), when we were guaranteed that it did indeed exist. Hence this discussion covers the
se where K = Sno.

case (i i) , no
Since no 2 9, we have nl 2 8 and A 5 -2. The move from Snl to S(n1 - 1) +

Sl, or S(n1 - 1) changes the parity of D, E , or both D and E respectively,
changes A by at most 2. Hence we can find an option for which A 5 0 and D and E

In all cases we can find correcting moves from any N position to some P position, as

I I: nl 5 no

Since the strings of 1 and 2 knots equal : 1 and : 2 respectively, this rule tells us about
e blurry genus sequences of single long strings. Indeed, we find that the position of the
ur in the genus sequence of a long string of size n is just n - 7.

Which sequences arise as genus sequences?

The various positions of Knots play an interesting role in answering the question,
sequences can arise?'. We already know that any genus sequence is an
odic sequence of period 2, and that in such a sequence a 0 or a 1 is always
. We will use the games we called S i in the discussion of Knots to prove

Theorem IV. Every admissible sequence is the genus sequence of some game.

37

Proof. From appendix I we have the genera
S8(1#20)
S9 (20#3 1)

S10(131#)
S11(2020#31)
S 12 (13 13 1 # 20)

etc.

If we compute the genera of the following games, which I will call Ji, we get:

54 = (S8 + 1 ,
55 = (S8 ,O ,1 , 3) genus ##1## ...
J6 = (S9 ,O0, l1 , 3) genus # # # O # O . . .
57 = (S9 + 1 ,Oo,l1,2 } genus ###1#1.. .
58 = (S10 + 1, 1',2,3} genus ####O#O. . .
J9 = (S l O ,Oo, 2,3} genus ####1#1.. .

J10 = (Sll ,O0, l1 , 3) genus # # # # # O # O . . .
J l l = (S11-t 1,Oo,l1,2 } genus #####1#1.. .

1',2,3} genus ##O#O. . .
0 1

etc.

0' indicates any game with genus sequence O#O#, say : 4, and 1' indicates a n y game
of genus 1#1#, say : 5 . We build one last sequence,

KO = (J 4 , 1',2,3 } genus O # # . . .
K 1 = (55 ,Oo, 2,3 } genus I## . . .
K2 = (J 6 ,OC',l1, 3 } genus #O##. . .
K 3 = (J 7 ,0",1',2 } genus #I##. . .
K4 = (58 ? 1',2,3,GO } genus # # O # # . . .
K5 = (J 9 ,Oo, } genus ##1##. . .
K6 = (J I O , O " , l l , 3,GZ } genus # # # O # # . ..
K7 = (511,0",1',2 ,G3 } genus ###1##. ..
K8 = (J12;

2,3, G1

1',2,3, GO, G4} genus # # # # O # # . . .
etc.

For any admissible sequence we can const,ruct a game with that sequence as its genus
by choosing its options from the lists of games Ji and Ki. For example, consider the
admissible sequence

1 # it' 0 # 0 #...
0 2 4 6 8 ...

We choose K's and J 's that have 1's and 0's exactly where this sequence does not,
thus:

38 i
i

J6
J7
J9

0 # 0 #...
1 # 1 #...
1 # 1 ...

KO 0 # # # # # # - a

K1 1 # # # # # # -
2 # O # # # # # - -
4 # # O # # # # - *

1 # # O # O ...
5 # # 1 ##,##. . .

using the J’s for the periodic part, and the K’s for
we find that any admissible string (i.e., no adjacent
does in fact occur as the genus of some game.

’ the sporadic part at the start. Thus
0’s and 1’s’ ultimately alternating)

39

