Advances in Losing

Thane Plambeck

Gathering for Gardner 7
Atlanta, March 2006

Example of play

Dawson's Chess (1934)-a misere game

No. 30. Problemist Fairy Supplement; 1934. Given two equal lines of opposing Pawns, White on 3rd rank, Black on 5 th, n adjacent files, White to play, at losing game, what is the result?
This recondite analysis may be commended to any mathematician. For small values of n, up to at least 50, first player loses if n equals 1, 2 , 6,7 , or 11 , modulus 14 . In the case of remainder 4 , mod. 14, the first player wins whatever move he plays first, e.g. for cases of 4, 18, and 32 files. For two separated groups of files, m and n, again for smaller values, the first player loses if to mod. $14, \mathrm{~m}$ and n are both 3 , 5 , 10 , or 12 ; or if one is $1,2,6,7,11$, and the other is $4,8,9,13$, or 14 . But it is reasonably clear to me that the general case involves an infinity of expanding moduli, and the results to mod. 14 cannot be taken very far, probably not into the hundreds.

Play of Dawson's Chess

Symmetry: Dawson's Chess is an impartial game

Summary

Dawson's chess is an impartial game.
Each position is either

- An N-position, ie, forced win for the Next player to move; or
- A P-position, ie a forced win for the Previous player to move.
It's played using the misere play convention-last player loses.

Sums in Dawson's chess

Is there a magic rule that tells us who should win?

Guy \& Smith (1956)

There is a magic rule for normal play of Dawson's chess. Its nim sequence has period 34

How should we use this information?

Nim

$$
\begin{aligned}
& 5=(101)_{2} \\
& 1=(001)_{2} \\
& 6=(110)_{2}
\end{aligned}
$$

$5 \oplus 1 \oplus 6=(010)_{2}[\oplus=$ bitwise XOR ("add without carrying")]

Normal play Dawson's chess is nim in disguise

Use nim addition \oplus to determine who wins $D_{4}+D_{10}+D_{16}$:

$$
0 \oplus 3 \oplus 2=1
$$

It's a first-player win.
That shows how to play normal play Dawson's chess, using knowledge of how to play normal play Nim.

But that wasn't the problem-we're interested in misere play, instead.

Misere Nim in the new wave French cinema (1961)

I am an avid fan of foreign, avant-garde, bizarre, challenging and/or enigmatic films, but this one is just plain agonizing to watch. The photography and the characters are beautiful, but I had to view this film in two sessions, both of them tormentingly slow. At first I thought it was some kind of variation on Sartre's "No Exit," but if it was, I was the one in the waiting room in Hell! This movie is pointless, vapid and pathetically pretentious. I hope God adds ninety-four minutes onto my life as a reward for sitting through Last Year at Marienbad!
---Jack M.Walter
Amazon customer review

Two Marienbad positions

Misere exception to normal play strategy

The Big Picture

Impartial Games

Normal play

Sprague-Grundy Theory (nim heaps, nim addition) 1930s

Conway's Genus Theory
(tame games)
1970s

Wild games
(quotient monoids) 2005

How to generalize Sprague-Grundy to misere play

$\Gamma=$ impartial game (fixed rules); $\mathcal{A}=$ set of all positions in Γ
\Downarrow
$\rho=$ indistinguishability congruence on \mathcal{A}
\Downarrow
$\mathcal{Q}(\Gamma)=\mathcal{A} / \rho=$ quotient of all positions by ρ
Normal play
Misere play

Sprague-Grundy Theory

$$
\mathcal{Q}(\Gamma)=\mathbb{Z}_{2} \times \mathbb{Z}_{2} \times \cdots
$$

Misere Quotient
$\mathcal{Q}(\Gamma)=\langle$ abelian monoid \rangle

Aaron Siegel's MisereSolver

Java language program that calculates \& exhibits misere indistinguishability quotients Q for many wild misere games.

!!!

Dawson's Chess

G4G7 gift exchange game: G-A-R-D-N-E-R

Normal or misere play?

Normal play_player to slide the last coin to the goal wins. Misere play—player to slide the last coin to the goal loses.

Normal play, part I: compute nim heap equivalents

1) Label the top node 0 .
2) Use the mex rule to label the rest.

Normal play, part II: nim addition

$$
\begin{array}{r}
\begin{array}{r}
(01)_{2} \\
(01)_{2} \\
(01)_{2} \\
(10)_{2}
\end{array} \\
\hline \text { nim sum }=(11)_{2}
\end{array}
$$

Make a move so that the recomputed nim-sum becomes (00) ${ }_{2}$

Misere play of GARDNER

Are there values we can similarly assign to solve misere play? YES!-but:

- they aren't nim heaps;
- their addition isn't nim addition.

Instead the key is a 14 -element monoid Q, the misere indistinguishability quotient of GARDNER.

G-A-R-D-N-E-R

The game board
Nim addition
The misere quotient

GARDNER vertices are assigned monomials

The misere quotient Q of GARDNER

Introduce reduction rules given by the abelian monoid presentation

$$
\mathcal{Q}=\left\langle a, b, c \mid a^{2}=1, b^{3}=b, b^{2} c=c, c^{3}=a c^{2}\right\rangle .
$$

The monoid $\mathcal{Q}=$ the GARDNER misere quotient.
A general monomial $a^{i} b^{i} c^{k}$ will always reduce to one of fourteen monomials

$$
\mathcal{Q}=\left\{1, a, b, c, a b, a c, b^{2}, a b^{2}, b c, a b c, a b c^{2}, c^{2}, a c^{2}, b c^{2}\right\}
$$

Four elements of \mathcal{Q} correspond to P -position types:

$$
P=\left\{a, b^{2}, c^{2}, b c\right\}
$$

Reverse side of gift exchange item

$$
\begin{aligned}
& \mathrm{a}^{2}=1 \\
& \mathrm{~b}^{3}=\mathrm{b} \\
& \mathrm{~b}^{2} \mathrm{c}=\mathrm{c} \\
& \mathrm{c}^{3}=\mathrm{ac}^{2}
\end{aligned}
$$

green monomials $=\mathrm{N}$-positions red monomials $=\mathrm{P}$-positions

- winning move
- winning for $\# \mathrm{~b}=0$ or 1
_ winning for \#b > 1

Normal play of Guiles

Rules of Guiles: You can

- remove a heap of 1 or 2 beans completely; or
- take two beans from a sufficiently large heap and partition what is left into two smaller, nonempty heaps.

	1	2	3	4	5	6	7	8	9	10
$0+$	1	1	0	1	1	2	2	1	2	2
$10+$	1	1	0	1	1	2	2	1	2	2
$20+$	1	1	0	1	1	2	2	1	2	2
$30+$	1	1	0	1	1	\cdots				

Figure: Nim values for normal play Guiles

Misere play of Guiles

	1	2	3	4	5	6	7	8	9	10
$0+$	a	a	1	a	a	b	b	a	b	b
$10+$	a	a	1	c	c	b	b	d	b	e
$20+$	c	c	f	c	c	b	g	d	h	i
$30+$	$a b^{2}$	$a b g$	f	$a b g$	$a b e$	b^{3}	h	d	h	h
$40+$	$a b^{2}$	$a b e$	f^{2}	$a b g$	$a b g$	b^{3}	h	d	h	h
$50+$	$a b^{2}$	$a b g$	f^{2}	$a b g$	$a b g$	b^{3}	b^{3}	d	b^{3}	b^{3}
$60+$	$a b^{2}$	$a b g$	f^{2}	$a b g$	$a b g$	b^{3}	b^{3}	d	b^{3}	b^{3}
$70+$	$a b^{2}$	$a b^{2}$	f^{2}	$a b^{2}$	$a b^{2}$	b^{3}	b^{3}	d	b^{3}	b^{3}
$80+$	$a b^{2}$	$a b^{2}$	f^{2}	$a b^{2}$	$a b^{2}$	b^{3}	b^{3}	d	b^{3}	b^{3}
$90+$	$a b^{2}$	$a b^{2}$	f^{2}	$a b^{2}$	$a b^{2}$	b^{3}	b^{3}	d	b^{3}	b^{3}
$100+$										

Figure: Misere equivalences for Guiles.

Misere addition in Guiles

Order 42 monoid

$$
\begin{aligned}
\mathcal{Q}=\langle a, b, c, d, e, f, g, h, i \quad| & a^{2}=1, b^{4}=b^{2}, b c=a b^{3}, c^{2}=b^{2}, b^{2} d=d, \\
& c d=a d, d^{3}=a d^{2}, b^{2} e=b^{3}, d e=b d, b e^{2}=a c e, \\
& c e^{2}=a b e, e^{4}=e^{2}, b f=b^{3}, d f=d, \text { ef }=a c e, \\
& c f^{2}=c f, f^{3}=f^{2}, b^{2} g=b^{3}, c g=a b^{3}, d g=b d, \\
& e g=b e, f g=b^{3}, g^{2}=b g, b h=b g, c h=a b^{3}, \\
& d h=b d, e h=b g, f h=b^{3}, g h=b g, h^{2}=b^{2}, \\
& b i=b g, c i=a b^{3}, d i=b d, e i=b e, f i=b^{3}, \\
& \left.g i=b g, h i=b^{2}, i^{2}=b^{2}\right\rangle .
\end{aligned}
$$

$P=\left\{a, b^{2}, b d, d^{2}, a e, a e^{2}, a e^{3}, a f, a f^{2}, a g, a h, a i\right\}$.

Misere sprouts: 3 spots per biosphere

How to add?

Misere sprouts addition, 3 spots per biosphere

Order 52 monoid

$$
\begin{aligned}
\langle a, b, c, d, e \quad| \quad a^{2} & =1, b^{5}=b^{3}, b^{2} c=c, c^{3}=c^{2}, b^{3} d=b^{4}, \\
c d & \left.=b c, d^{2}=1, c^{2} e=c 2, b^{2} e^{2}=c^{2}, c e^{2}=c^{2}, e^{3}=c^{2}\right\rangle .
\end{aligned}
$$

$P=\left\{a, b^{2}, b^{4}, c, c^{2}, a d, b e, a b^{3} e, a b c e, b d e, e^{2}\right\}$

Dawson's chess—at most 33 vs 33 pawns per summand (order = 638)

$$
\begin{aligned}
& Q_{33}=\langle a, b, c, d, e, f, g, h, i, j, k, l, m, n| a^{2}=1, b^{5}=b^{3}, b^{2} c=b^{3}, c^{3}=c, b^{2} d^{2}=b^{2}, \\
& b c d^{2}=b c, d^{3}=d, b^{2} e=b^{4}, c e=b^{3}, e^{2}=b^{4}, b^{2} f=a b^{2}, c f=a c, b f^{2}=b, d f^{2}=d, e f^{2}=e, f^{3}=f, \\
& b g=a b c, c d g=a c^{2} d, d^{2} e g=e g, f^{2} g=g, g^{2}=a c g, b c h=b^{4} h, f^{2} h=h, c g h=a c^{2} h, b^{3} h^{2}=b h^{2}, \\
& c h^{2}=b h^{2}, d^{2} h^{2}=h^{2}, e h^{2}=b^{2} h^{2}, b f h^{2}=a b h^{2}, g h^{2}=a b h^{2}, h^{3}=b^{2} h^{2}, b^{2} i=a b^{4}, b c i=a b^{4} \text {, } \\
& c d i=a b c^{2} d, e i=a b^{4}, f^{2} i=i, g i=a c i, c h i=a b^{3} h, b h^{2} i=a b h^{2}, i^{2}=b^{4}, b j=a b e, c j=a b^{3}, \\
& d j=a d e, e j=a b^{4}, f^{2} j=j, h^{2} j=a b^{2} h^{2}, i j=b^{4}, j^{2}=b^{4}, b^{2} k=b^{4} d, b c k=b^{4} d, c d k=b^{3} \text {, dek }=b^{4} \text {, } \\
& d f k=a d k, d g k=a b^{3}, e g k=a b^{3} d, h^{2} k=b^{2} d h^{2}, b i k=a b e k, d i k=a b^{4}, h i k=a e h k, g j k=b e k, \\
& b k^{2}=b^{3}, d k^{2}=b^{4} d, e k^{2}=b^{4}, f k^{2}=a c^{2} k^{2}, c^{2} g k^{2}=g k^{2}, h k^{2}=b^{4} h, c^{2} i k^{2}=i k^{2}, j k^{2}=a b^{4}, \\
& c^{2} k^{3}=k^{3}, i k^{3}=c^{2} i k, k^{4}=c^{2} k^{2}, b^{2} I=a b^{2} d, c l=a c d, f^{2} I=I, d g I=c d^{2}, e g l=b^{3} d, b d^{2} h l=b h l \text {, } \\
& d^{2} e h l=e h l, h^{2} l=a b^{2} d h^{2}, b i l=a b d^{2} e l, h i l=a e h l, j l=a e l, b k l=a b d k, d k l=a d^{2} k, e k m=b e k \\
& e h k l=a b^{4} h, i k l=a e k l, k^{2} l=a b^{4} d, d^{2} l^{2}=l^{2}, e l^{2}=d k, f l^{2}=a l^{2}, g l^{2}=a c d^{2}, k l^{2}=d^{2} k, \\
& l^{3}=a d l^{2}, b m=b^{2}, d m=b d, c^{2} g m=g m, e g m=a b^{4}, f g m=a g m, h m=b h, i m=b i, j m=a e m, \\
& c^{2} k^{2} m=k^{2} m, g k^{2} m=i k^{2}, I m=b d^{2} I, m^{2}=b^{2}, b^{2} n=a b d^{2} k, c n=a c^{2} d, b d n=i I^{2}, d e n=a b^{3}, \\
& d f n=a d n, g n=c^{2} d, b h n=a d^{2} h k, e h n=a b^{3} d h, h^{2} n=a b d h^{2}, i n=b c^{2} d, j n=a e n, d k n=a b^{3} d, \\
& e k n=a b^{3}, b f k n=a b k n, h k n=a g h k l, k^{3} n=a b^{3}, d l n=a d^{2} n, b e l n=a e k l, h l n=a d h n, \\
& \left.k l n=b^{3} d, I^{2} n=d^{2} n, e m n=a b^{4} d, f m n=a d i l^{2}, k^{2} m n=a b^{4} d, n^{2}=c^{2} d^{2}\right\rangle
\end{aligned}
$$

The game board

P-positions, Dawson's chess (to 33 pawns)

$$
\begin{aligned}
P= & \left\{a, b^{2}, b^{4}, c, a c^{2}, a d, c d, a c^{2} d, a d^{2}, c d^{2},\right. \\
& a c^{2} d^{2}, e, d^{2} e, f, d f, d^{2} f, a e f, a d^{2} e f, \\
& a f^{2}, a g, c g, a c^{2} g, a d g, a d^{2} g, f g, d f g, d^{2} f g, \\
& a b h, a b^{3} h, a b d^{2} h, e h, b d e h, d^{2} e h, b f h, \\
& b d^{2} f h, b e f h, b d^{2} e f h, a e f g h, h^{2}, b^{2} h^{2}, a f h^{2}, \\
& a h i, a d h i, a d^{2} h i, a b f h i, a b d^{2} f h i, \\
& f h^{2} i, a j, f j, a h j, f g h j, k, a c k, c^{2} k, d k, a f k, \\
& f^{2} k, g k, a c g k, c^{2} g k, a f g k, a c h k, d h k, a b e h k, g h k, \\
& a f g h k, c i k, a k^{2}, a c^{2} k^{2}, a c k^{3}, g k^{3}, l, d l, \\
& d^{2} l, a d e l, a f l, a d f l, a d^{2} f l, d e f l, g l, a f g l, \\
& b d h l, b d e h l, a b d f h l, d e f h l, a k l, f k l, e f k l, f h k l, \\
& f g h k l, a l^{2}, a d l^{2}, a b h l^{2}, c k m, a g k m, c g k m, c k^{2} m \\
& a n, a d n, a d^{2} n, f n, a f^{2} n, k n, a f k n, \\
& \left.f^{2} k n, a k^{2} n, I n, a e l n, a f l n\right\}
\end{aligned}
$$

The game board

Monomial equivalents for n pawns in a row, Dawson's chess (to 33 pawns)

n	1	2	3	4	5	6	7	8
$0+$	1	a	a	b	1	$a b$	a	a
$8+$	1	$c^{2} g$	$a b$	c	b	d	1	$a d$
$16+$	$a c^{2} g$	b	$a c$	$a b$	e	f	$a e$	g
$24+$	h	c	i	j	c^{2}	k	l	m
$32+$	n							

References

http://arxiv.org/abs/math.CO/0501315 http://arxiv.org/abs/math.CO/0603027

Kayles, normal play

	1	2	3	4	5	6	7	8	9	10	11	12
$0+$	1	2	3	1	4	3	2	1	4	2	6	4
$12+$	1	2	7	1	4	3	2	1	4	6	7	4
$24+$	1	2	8	5	4	7	2	1	8	6	7	4
$36+$	1	2	3	1	4	7	2	1	8	2	7	4
$48+$	1	2	8	1	4	7	2	1	4	2	7	4
$60+$	1	2	8	1	4	7	2	1	8	6	7	4
$72+$	1	2	8	1	4	7	2	1	8	2	7	4
$84+$	1	2	8	1	4	7	2	1	8	2	7	4
$96+$	\ldots											

Figure: The nim sequence of normal play Kayles.

Kayles, misere play

Order 40 misere quotient

	1	2	3	4	5	6	7	8	9	10	11	12
$0+$	x	z	$x z$	x	w	$x z$	z	$x z^{2}$	v	z	$z w$	t
$12+$	$x z^{2}$	z	$z w x$	$x z^{2}$	$v^{2} t$	$x z$	z	$x v t$	$w z^{2}$	$z w$	$z w x$	$w z^{2}$
$24+$	f	z	g	$x w z^{2}$	$w z^{2}$	$z w x$	z	$x z^{2}$	g	$z w$	$z w x$	$w z^{2}$
$36+$	$x z^{2}$	z	$x z$	$x z^{2}$	$w z^{2}$	$z w x$	z	$x z^{2}$	g	z	$z w x$	$w z^{2}$
$48+$	$x z^{2}$	z	g	$x z^{2}$	$w z^{2}$	$z w x$	z	$x z^{2}$	$w z^{2}$	z	$z w x$	$w z^{2}$
$60+$	$x z^{2}$	z	g	$x z^{2}$	$w z^{2}$	$z w x$	z	$x z^{2}$	g	$z w$	$z w x$	$w z^{2}$
$72+$	$x z^{2}$	z	g	$x z^{2}$	$w z^{2}$	$z w x$	z	$x z^{2}$	g	z	$z w x$	$w z^{2}$
$84+$	$x z^{2}$	z	g	$x z^{2}$	$w z^{2}$	$z w x$	z	$x z^{2}$	g	z	$z w x$	$w z^{2}$
$96+$	\cdots											

Figure: The pretending function of misere Kayles.

