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Abstract

Combinatorial games are played under two different play conventions: normal play,

where the last player to move wins, and misère play, where the last player to move

loses. Although much work has been done on games played under the normal play

convention, less has been done for games played under the misère play convention.

This thesis discusses the theory of impartial combinatorial games which are played

under the misère game convention. We present a full discussion, including proofs, on

Conway’s Genus Theory and use genus theory to study two impartial combinatorial

games played under the misère game convention. We conclude with an overview of

Plambeck’s development for impartial combinatorial games played under the misère

game convention, the Indistinguishablility Quotient.
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Chapter 1

Introduction

In all future sections, unless otherwise referenced, theorems and/or proofs are the

author’s own work.

In this chapter we introduce the basics of combinatorial game theory, taking and

breaking games, and the differences between games played under the normal play

convention and games played under the misère play convention.

1.1 Combinatorial Games

Definition. A combinatorial game is a game in which the following conditions are

satisfied:

• There are two players, usually denoted by Left and Right, who alternate turns.

Generally Left is male whereas Right is female.

• There is a clearly defined rule set which determines the legal moves for each

player.

• There is complete information. That is, all information regarding the game is

available to both Left and Right at every point of the game.

• There is no element of chance which can affect the game, such as dice, cards,

or spinners.

• There is only a finite number of moves allowed and the game will end with one

winner and one loser.

• The way to determine the winner and the loser depends on the play convention.

Under the misère play convention, the first player unable to make a valid

move wins. Under the normal play convention, the first player unable to

1
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make a valid move loses. Equivalently, under the misère play convention, the

last player to move loses, while under the normal play convention, the last player

to move wins.

All games considered in this thesis will be combinatorial games, even if combina-

torial is not explicitly stated.

Many games with which we are familiar do not satisfy all the conditions required

to be a combinatorial game. For example, most card games, such as Poker, would

no longer be enjoyable with complete information. Other games, such as some board

games like Monopoly, have the potential for an infinite number of moves, as well as

using elements of chance, namely dice. Games such as Tic-Tac-Toe, which have two

players, clear rules, perfect information, and a finite number of moves, also have the

potentials for draws.

An example of a combinatorial game is the game of Nim: given several heaps of

tokens, on her turn, a player picks a heap and removes some tokens from that heap.

Play continues until no heaps remain. Under the normal play convention, the player

who takes the last token is the winner. Under the misère play convention, the player

who takes the last token is the loser. The game of Nim, although seemingly trivial,

turns out to be extremely useful in certain types of combinatorial game analysis.

Nim is a game to which we will refer frequently, and so, we will use the following

shorthand:

Notation. We will denote a Nim heap with n tokens by n.

1.1.1 Options and Followers

Definition. Suppose we are given a game position G. A left option of G is a new

position which arises after one move from Left. Similarly, a right option of G is a

new position which arises after one move from Right. The options of a position is

the union of the left options and the right options.

Notation. We let GL and GR denote the set of Left and Right options of G respec-

tively.
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Definition. Suppose we are given a position in the game G. A follower of the

position is a new position which can be reached from the initial position after a finite

number of moves.

Example 1.1.1. Suppose we are playing the following game: given a heap of n

tokens, Left can take one or two tokens, whereas Right can take three. Suppose we

are given a heap of size 12. Then the left options of this position are heaps of 11 and

10, while the right option of this position is a heap of size nine. A heap of size three

is a follower of a heap of size 12 under the following move set:

12 L // 11 R // 8 L // 6 R // 3.

1.1.2 Games Defined In Terms of Their Options

We define positions based on their options. For a position G, we think of G as a

specific position in the game along with its sets GL and GR, and we write

G = {GL | GR}.

Thus, we can define games recursively based on their left and right options from any

given position.

Example 1.1.2. Suppose we are playing Nim. Then4 = {3, 2, 1, 0 | 3, 2, 1, 0}.
1.1.3 Disjunctive Sum

Definition. Given combinatorial games G1, G2, · · ·Gµ, the disjunctive sum is the

game G1 +G2 + · · ·Gµ where on a given player’s turn, she picks a game Gi and plays

in it according to the rules of Gi. In misère play, when a player has no moves in every

game in the disjunctive sum, she wins. In normal play, when a player has no moves

in every game in the disjunctive sum, she loses.

Notation. Let X be a set of games, and G a game. Then

G + X = {G + X | X ∈ X}.
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In the game value notation shown in Section 1.1.2, the disjunctive sum of games

G and H is written as:

G + H = {(GL + H) ∪ (G + HL)|(GR + H) ∪ (G + HR)},

where we often remove the ∪ and replace it by a comma, i.e.

G + H = {GL + H, G + HL|GR + H, G + HR}.

1.1.4 Perfect Play

For this thesis, we will always assume that the players play perfectly, that is, both

players make the optimal moves available to them. If on her turn, a player can make

a move which ensures that she will win, no matter what the other player’s subsequent

moves are and assuming that she continues to play perfectly, then she will make it.

If no such move exists, she will make a non-winning move.

1.1.5 Outcome Classes

Definition. Every combinatorial game G belongs to an outcome class which spec-

ifies who has the winning strategy. G belongs to one of four disjoint outcome classes

as follows:

1) G ∈ L if Left has a winning strategy regardless of moving first or second.

2) G ∈ R if Right has a winning strategy regardless of moving first or second.

3) G ∈ N if the next player to move has a winning strategy.

4) G ∈ P if the next player moving does not have a winning strategy (i.e. she will

lose). The P stands for previous, as if the next player loses, the player who would

have played previous to her will win, supposing optimal moves.

Theorem 1.1.1. ([4], p.73) Every game G is in exactly one of the four outcome

classes.

For a given position G, the outcome class of G played under the normal play

convention may or may not be the same as the outcome class of G played under the

misère play convention, as the following two examples show.
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Example 1.1.3. Suppose G is a game with no options. Under the normal play

convention, the next player to go loses, regardless of whether they are Left or Right,

so G ∈ P. Under the misère play convention, the next player to go wins, regardless

of whether they are Left or Right, so G ∈ N .

Example 1.1.4. Consider the game 2+3. Suppose we are playing under the normal

play convention, with Left going first. Consider the following move:2+ 3 L // 2+ 2.
Right can respond in one of two ways. The first is2+ 2 R // 2.
However, Left can take the heap of size two,2 L // 0,
leaving Right with no moves.

Right’s second response is 2+ 2 R // 1+ 2.
However, if Left responds with 1+ 2 L // 1+ 1,
Right is forced to respond with 1+ 1 R // 1,
and Left takes the last token, 1 L // 0
leaving Right with no moves.

Interchanging Right and Left and repeating the argument, we see that 2+ 3 ∈ N

under the normal play convention.
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Suppose we are playing under the misère play convention, with Left going first.

Consider the following move: 2+ 3 L // 2+ 2.
Right can respond in one of two ways. The first is2+ 2 R // 2,
However, Left can take one of the tokens from the heap of size two2 L // 1,
which forces Right to take the heap of size one,1 R // 0,
leaving Left with no moves. Since we are now playing under the misère game con-

vention, Left wins.

Right’s second response is 2+ 2 R // 1+ 2.
However, if Left responds with 1+ 2 L // 1,
Right is forced to take the heap of size one,1 R // 0,
leaving Left without any moves. Again Left wins.

Interchanging Right and Left and repeating the argument, we see that 2+ 3 ∈ N

under the misère play convention as well.

1.1.6 Impartial and Partizan

Based on the moves available to each player, combinatorial games are partitioned as

follows:
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Definition. A combinatorial game G is impartial if from any position and for all

of its followers, the left and right options are equal. Otherwise, the game is partizan.

Nim is an impartial game since from any position, either player has exactly the

same options. However, under a slight variation, where Left can only take one token

whereas Right can only take two, this game becomes partizan since given a heap with

one token, Left has a move while Right does not.

Theorem 1.1.2. ([1], p.41) If G is an impartial combinatorial game, then the out-

come class of G is either N or P.

Note that Theorem 1.1.2 is true for impartial games played under the normal or

the misère play convention. That is, an impartial game played under the normal play

convention is in either N or P and an impartial game played under the misère play

convention is in either N or P.

1.1.7 Equivalence and Normal Play Values

Definition. Given two games G, and H played under the normal play convention,

we write G = H and say that G is equivalent to H if for all games X played

under the normal play convention, G + X has the same outcome as H + X, where +

denotes the disjunctive sum from Section 1.1.3 and we are playing both disjunctive

sums under the normal play convention.

Thus, if G = H , then in any disjunctive sum of games, we can replace G with H

without any effect on the outcome class of the disjunctive sum.

Similar to how games were defined in terms of their options in Section 1.1.2, under

the normal play convention, games are also recursively assigned values based on the

values of their options. For a game G, we write

G = {GL|GR}.

The most basic position of a game is a position in which neither Left nor Right has

options, i.e. GL = GR = ∅. We then write the game as { | }. If we are playing under
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the normal play convention, the value of this game is 0. We now construct three more

games:

{0|0}, {0| }, { |0},

where, if we are playing under the normal play convention, we denote

{0|0} := ∗,

{0| } := 1,

{ |0} := −1.

The reason for the nomenclature of 1 and -1 is that these games share similar prop-

erties to what we generally think of as 1 and -1 if we are playing under the normal

play convention ([4], p.6-12).

We can continue to build games as such, giving us, under the normal play con-

vention, games which are “equal” to any integer or dyadic rational, and “ordered”

in the same way as their numerical counterparts, as well as games which are called

infinitesimal, which are neither greater than nor less than zero. For more on this, see

[4], Chapters Zero, One, Eight, and Nine.

One important thing to note is that two games can have different options, but the

same game value. For example, there are other games whose value is 0, even though

there are options for both Left and Right.

It seems that we have used = for both equivalence and game value. The reason

for this is:

Theorem 1.1.3. ([4], p. 112) Given games G and H. The values G and H are equal

⇐⇒ G = H.

Equivalence and game values are only for games played under the normal play

convention. Under the misère play convention, we have neither a notion

of game values nor game equivalence. This is because in misère play, a game

with no options is considered a winning game for the next player, even though the

player has no moves available to her, which causes some difficulties in determining

the equivalence between certain games. To quote Conway:
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Unfortunately, the complications so produced persist indefinitely, and

make the misère play theory much more complicated than the normal

one. ([4], p. 138)

1.2 Taking and Breaking Games

Taking and Breaking games are impartial games involving removing tokens from

heaps and/or splitting heaps of tokens into smaller heaps, based on the rules of the

game. The name comes from the legal moves - Taking from the moves in which one

takes tokens, Breaking from the moves in which one splits, or breaks up, heaps into

smaller heaps.

Definition. An octal game is a Taking and Breaking game in which players either

take tokens from a heap or take tokens from a heap and then split the remaining

tokens into two non-empty heaps. The rules are encoded in a sequence 0.d1d2d3 · · ·,

where di ∈ {0, 1, 2, · · · , 7}. A legal move is to remove i tokens from a heap and

partition the remaining tokens into a, b, or c heaps given that di = 2a + 2b + 2c.

Example 1.2.1. Consider the octal game 0.12305. We can take 1, 2, 3 or 5 tokens

based on the following rules:

1) Remove one token from a heap provided that the heap’s remaining tokens can be

partionned into no heaps; that is, provided the initial heap contains exactly one

token (1 = 20).

2) Remove two tokens from a heap provided that the heap’s remaining tokens can

be partionned into exactly one heap; that is, provided the initial heap contains

strictly greater than two tokens (2 = 21).

3) Remove three tokens from a heap provided that the heap’s remaining tokens can

be partionned into either no heaps or one non-empty heap; that is, we can always

remove three tokens in the heap contains three or more tokens (3 = 20 + 21).

4) We cannot remove four tokens.
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5) Remove five tokens from a heap provided that the heap’s remaining tokens can be

partionned into no heaps or two non-empty heaps; that is, we can removed five

tokens from a heap of size five, or we can remove five tokens from a heap of size

seven or greater, and then split the remaining tokens from the initial heap into

two non-empty heaps (5 = 20 + 22).

6) We cannot remove six or more tokens.

Definition. A subtraction game is an octal game where ∀ i ∈ N, di = 0 or 3.

That is, the only available moves are to remove i tokens, for i where di = 3. For a

fixed subtraction game, let

X = {i ∈ N | di = 3}.

We call X the subtraction set of the game. When referencing a subtraction game,

rather than giving the octal code, we sometimes refer only to the subtraction set.

Notation. We let 0.a1a2a3a4a5a6 denote

0. a1a2a3 a4a5a6 a4a5a6 a4a5a6 a4a5a6 a4a5a6 a4a5a6 · · · .

That is, an overline denotes infinite repetition of the numbers underneath.

Example 1.2.2. The game of Nim is a subtraction game with octal code 0.3̄. The

subtraction set of Nim is N.

Example 1.2.3. The modification of Nim where we can only take prime numbers

less than ten is a subtraction game with octal code 0.0330303. Its subtraction set is

{2, 3, 5, 7}.

1.3 Nim and The Sprague-Grundy Theory for Normal Play Impartial

Games

Definition. We define nimbers recursively as follows:

0 := { | },

∗ := {0|0},
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∗2 := {0, ∗|0, ∗},

∗3 := {0, ∗, ∗2|0, ∗, ∗2},

· · ·

∗n := {0, ∗, ∗2, ∗3, · · · , ∗n−1|0, ∗, ∗2, ∗3, ∗n−1}.

Some books denote 0 by ∗0 and ∗ by ∗1.

Proposition 1.3.1. ([1], p. 110) A Nim heap with n tokens, n, has game value ∗n.

Proof. We proceed by induction on n.

We can see that a Nim heap with no tokens, in which neither Left nor Right have

any options, has game value 0 since 0 = { | }.

Suppose now we have k. From k, we can move to 0, 1, · · · , k− 1, which have

values 0, ∗, · · · ∗k−1, by induction. Thereforek = {0, ∗, ∗2, ∗3, · · · , ∗k−1|0, ∗, ∗2, ∗3, ∗k−1} = ∗k,

as required. �

Nim and nimbers are extremely important in impartial normal game analysis

because of the following, arrived at independently by both Sprague and Grundy in

the 1930s:

Theorem 1.3.2. ([6]) Every normal play impartial game is equivalent to a Nim-heap

of a certain size. That is, the game value of an impartial game G is ∗n for some

n ∈ N.

1.3.1 Mex

In impartial normal game calculations, we often make use of the following tool:

Definition. The minimal excludant, or mex, of a set of ordinals X , is the least

ordinal not in the set X .

Example 1.3.1.

mex{1, 2, 3} = 0,

mex{0, 1, 3, 6, 7, 12, 89} = 2,

mex{0, 2, 4, 6, 8, · · ·} = 1.
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Notation. Let A ⊆ Z≥0 . Let a1, a2, · · · , an ∈ Z≥0. We abuse notation by letting

mex{a1, a2, · · · , an,A} = mex{{a1} ∪ {a2} ∪ · · · ∪ {an} ∪ A}.

We use mex in the following:

Proposition 1.3.3. ([1], p. 111) Given an impartial game G played under the normal

play convention, then G is equivalent to the Nim heap which corresponds to the least

possible number that is not the size of any of the heaps which correspond to the options

of G. In other words, if the options of G correspond to Nim heaps of size a, b, c, · · ·,

then G corresponds to a Nim heap of size mex{a, b, c, · · ·}.

Combining Proposition 1.3.3 and the Sprague-Grundy Theorem for impartial nor-

mal games we obtain the following result:

Proposition 1.3.4. ([1], p.112) Given an impartial game G played under the normal

play convention:

the outcome class of G =

{

P if G is equivalent to a Nim heap of size 0

N else.

1.3.2 Nim Sum

Definition. Given non-negative integers n and m, their Nim sum, denoted by n⊕m,

is the exclusive or of their binary representation. Equivalently, the Nim sum of n and

m can be determined by writing each of them as a sum of distinct powers of two and

then cancelling any power of two which occurs an even number of times.

Example 1.3.2. 11 ⊕ 22 ⊕ 33

32 16 8 4 2 1

11 = 1 0 1 1

22 = 1 0 1 1 0 ,

33 = 1 0 0 0 0 1

60 = 1 1 1 1 0 0
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or

11 ⊕ 22 ⊕ 33 = (8 + 2 + 1) ⊕ (16 + 4 + 2) ⊕ (32 + 1)

= (8 + 62 + 61) + (16 + 4 + 62) + (32 + 61)

= 8 + 16 + 4 + 32

= 60.

Proposition 1.3.5. ([1], p.112) The operation ⊕ is commutative and associative.

Proof. This follows from the commutativity and associatively of +. �

Proposition 1.3.6. For any two non-negative integers m and n, m ⊕ n ≤ m + n.

Proof. This follows from the definition of Nim sum. �

Proposition 1.3.7. ([1],p.114) Given two impartial games G and H which corre-

spond to Nim heaps of size g and h respectively, then their disjunctive sum G + H

corresponds to the Nim heap of size g ⊕ h. That is, if G = ∗g and H = ∗h, then

G + H = ∗g⊕h.

1.4 Normal versus Misère

Traditionally, combinatorial game theoreticians have concerned themselves with com-

binatorial games played under the normal play convention, although to a non-game

theoretician, this choice may seem counterintuitive. Many of the first games to which

we are introduced as children, although few are combinatorial games, are played under

the misère game convention. Some examples are Crazy Eights, Snakes and Ladders,

and Chinese Checkers, in which the goal is to either discard all one’s cards or be first

to the end of the board, leaving the winner with no moves left and the other players

with moves still available. The reason for this choice is simply that misère games

seem more difficult to analyse (as discussed in Section 1.1.7), and so the mathemat-

ical development of normal play games far surpasses that of misère games. Many

simplistic ideas of how misère games should work in relation to normal games, such

as if an impartial game is in N under normal play, then it must be in P under misère
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play (or vice versa), or a losing move under normal version of a game is a winning

move under misère play, simply are not true. Example 1.1.4 showed that 2 + 3 ∈ N

regardless of being played under the normal play or misère play convention. The

following example shows that a bad move can be so under either normal or misère

play.

Example 1.4.1. Consider the game 2 + 2.
Suppose we are playing under the normal play convention, and Left’s first move

is to 2 + 2 L // 2
i.e. taking one of the heaps of size two. Right responds in kind by taking the other

heap of size two, leaving no tokens remaining. So Right wins under the normal play

convention. However, Right also wins under the misère play convention if Left’s first

move is also to take one of the two heaps of size 2:2+ 2 L // 2 R // 1 L // 0
Therefore, a losing move under normal play does not necessarily translate into a

winning move in misère play.

1.4.1 A Sprague-Grundy Theory for Impartial Misère Games?

Recall Theorem 1.3.2 - Every impartial game played under the normal play convention

is equivalent to a Nim heap. Ideally, we would like to say the same for impartial games

played under the misère play convention. However, as will be discussed in Section

2.2, this is not the case with impartial misère games. Much of the study of impartial

misère games has been on determining which impartial misère games behave like Nim.

1.5 Thesis Overview

This rest of the thesis is divided as follows:

• Chapter 2 discusses the notion of genus, an important tool in impartial misère

game theory. Knowledge of the genus of a position of a game not only tells us
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the outcome class for both the normal and misère play position, it also allows

us to determine whether under the misère game convention, this game behaves

like misère Nim.

• In Chapter 3, we use the genus to analyse subtraction games and octal games

which do not permit splitting.

• In Chapter 4, we use the genus to analyse the game of Toppling Towers. This

game has many similarities to octal games and allows both subtraction and

splitting.

• In Chapter 5, we discuss the indistinguishablility quotient, a new method devel-

oped by Plambeck ([8]), which allows us to analyse a wide variety of “non-Nim”

octal games.



Chapter 2

Genus

The traditional tool for impartial misère game analysis is the genus symbol or the

misère Grundy value, developed by Conway ([4], Chapter 12 and [3], Chapter 13).

The genus of an impartial misère game G allows one to determine whether this game

is misère Nim in disguise and to calculate G’s outcome class.

Although the statement of many of the results regarding genus have appeared in

the literature, few of the results appear with proof. Statements which have appeared

previously are referenced, although the proofs presented here are of the author’s own

construction.

Unless otherwise stated, all games in this chapter are impartial games.

2.1 Calculating the Genus

Definition. Fix a game G. We define

G+(G) =

{

0 if G has no options

mex{G+(G′) | G′ is an option of G} else,

and

G−(G) =

{

1 if G has no options

mex{G−(G′) | G′ is an option of G} else.

Note that G+ is the same as the value determined in Proposition 1.3.3. That is, for

an impartial game G, G+(G) corresponds to the Nim heap to which G is equivalent

under the normal play convention.

Example 2.1.1. Consider 0. 0 has no options, so by definition:

G−(0) = 1.

16
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Consider 1. The moves available are:1 −1 // 0.
Therefore

G−(1) = mex{G−(0)}
= mex{1}

= 0

Consider 2. The moves available are:2 −2 // 0
−1 // 1

Therefore

G−(2) = mex{G−(0),G−(1)}
= mex{1, 0}

= 2

Lemma 2.1.1. For any game G, G−(G + 1) = G−(G) ⊕ 1.

Proof. We show this by induction on the options of G. Suppose G is a game with no

options. Then G−(G) = 1.

Look now at G−(G+1). Since we cannot move in G, we simply ignore its presence

and consider the only available move in 1:
G−(G + 1) = mex{G−(0)}

= mex{1} since 0 has no options

= 0

= 1 ⊕ 1

= G−(G) ⊕ 1,

which shows the base case.



18

Take a game G with options G0, G1, · · · , Gµ, and suppose the statement holds for

all options of G. Then

G−(G + 1) = mex{G−(G),G−(G0 + 1),G−(G1 + 1), · · · ,G−(Gµ + 1)}.
By the induction hypothesis, we have that

G−(G + 1) = mex{G−(G),G−(G0) ⊕ 1,G−(G1) ⊕ 1, · · · ,G−(Gµ) ⊕ 1}.

Claim G−(G+1) = G−(G)⊕1. We must show that no value in the mex set equals

G−(G) ⊕ 1 and there are values in the mex set equal to all non-negative integers less

than G−(G) ⊕ 1.

Suppose there exists an option of G, Gi, with G−(Gi) ⊕ 1 = G−(G) ⊕ 1. Then

G−(Gi) = G−(G), which is a contradiction.

Let G−(G) = n. Then, without loss of generality, we can assume that

G−(G0) = 0,G−(G1) = 1, · · · ,G−(Gn−1) = n − 1,

and for i ∈ {n, n + 1, · · · , µ}, G−(Gi) ∈ N, G−(Gi) 6= n.

Then

G−(G) ⊕ 1 =

{

n + 1 if n ≡ 0 mod(2)

n − 1 if n ≡ 1 mod(2).

Moreover

G−(G0) ⊕ 1 = 1,

G−(G1) ⊕ 1 = 0,

G−(G2) ⊕ 1 = 3,

G−(G3) ⊕ 1 = 2,

· · ·

G−(Gn−4) ⊕ 1 =

{

n − 3 if n ≡ 0 mod(2)

n − 5 if n ≡ 1 mod(2),

G−(Gn−3) ⊕ 1 =

{

n − 4 if n ≡ 0 mod(2)

n − 2 if n ≡ 1 mod(2),

G−(Gn−2) ⊕ 1 =

{

n − 1 if n ≡ 0 mod(2)

n − 3 if n ≡ 1 mod(2),
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G−(Gn−1) ⊕ 1 =

{

n − 2 if n ≡ 0 mod(2)

n if n ≡ 1 mod(2).

Therefore for all m < n ⊕ 1, there is a value in the mex set which equals m,

and we have already shown that there does not exist i ∈ {1, 2, · · · , µ} such that

G−(Gi) ⊕ 1 = n. Thus

G−(G + 1) =

{

n + 1 if n ≡ 0 mod(2)

n − 1 if n ≡ 1 mod(2)

= G−(G) ⊕ 1,

as required. �

Definition. The genus of a misère game G, denoted by Γ (G), is a list of the form

gg0g1g2g3··· where

g = G+(G),

g0 = G−(G),

g1 = G−(G + 2),
g2 = G−(G + 2+ 2),

· · ·

gn = G−

(

G +

n
∑

i=1

2) ,

· · ·

Much like G+ and G−, the calculation Γ (G) can be recursively determined by the

genera of the options of G, as the following proposition shows.

Proposition 2.1.2. ([3], p.430) Suppose G is an impartial game with options Ga,

Gb, Gc, Gd, · · · such that

Γ (Ga) = aa0a1a2a3···,

Γ (Gb) = bb0b1b2b3···,

Γ (Gc) = cc0c1c2c3···,

Γ (Gd) = dd0d1d2d3···,

· · ·
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Then Γ (G) = gg0g1g2g3··· is calculated as follows:

g = mex{a, b, c, d · · ·},

g0 = mex{a0, b0, c0, d0 · · ·},

g1 = mex{g0, g0 ⊕ 1, a1, b1, c1, d1 · · ·},

g2 = mex{g1, g1 ⊕ 1, a2, b2, c2, d2 · · ·},

· · ·

gn = mex{gn−1, gn−1 ⊕ 1, an, bn, cn, dn · · ·}.

Proof. We begin with g:

g = mex{G+(Ga),G
+(Gb),G

+(Gc),G
+(Gd), · · ·}

= mex{a, b, c, d, · · ·}.

Consider now g0:

g0 = mex{G−(Ga),G
−(Gb),G

−(Gc),G
−(Gd), · · ·}

= mex{a0, b0, c0, d0, · · ·}.

Fix n ∈ N. We will show the result for gn. The options of G +
∑n

i=1 2 are

G +
∑n−1

i=1 2,
G +

∑n−1
i=1 2 + 1,

Gj +
∑n

i=1 2 for Gj an option of G.

Therefore

gn = mex

{

G−

(

G +
n−1
∑

i=1

2) ,G−

(

G +
n−1
∑

i=1

2 + 1) ,

{

G−

(

Gj +
n
∑

i=1

2) ∣∣∣
∣

∣

Gj an option of G

}}

= mex{gn−1, gn−1 ⊕ 1,
{

G−

(

Gj +

n
∑

i=1

2) ∣∣∣
∣

∣

Gj an option of G

}}

by Lemma 2.1.1

= mex{gn−1, gn−1 ⊕ 1, an, bn, cn, dn · · ·},

which gives the result. �
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We are now able to calculate the genus of a game:

Proposition 2.1.3. The genus of 2 is 22020202020202020···. That is, the superscript of

the genus symbol alternates between 2 and 0.

Proof. We begin with g:

g = G+(2)
= mex{G+(0),G+(1)}
= mex{0, mex{G+(0)}}
= mex{0, mex{0}}

= mex{0, 1}

= 2.

Therefore Γ (2) = 2g0g1g2···.

Claim that

gn =

{

2 if n ≡ 0 mod(2)

0 if n ≡ 1 mod(2).

We will show this by induction on n.

g0 = G−(2) g1 = G−(2+ 2)
= mex{G−(0),G−(1)} = mex{G−(2),G−(2+ 1)}
= mex{1, mex{G−(0)}} = mex{2,G−(2) ⊕ 1} by Lemma 2.1.1

= mex{1, mex{1}} = mex{2, 2 ⊕ 1}

= mex{1, 0} = mex{2, 3}

= 2 = 0

This shows the base case.

Suppose true ∀ n < k. Consider n = k.

gk = G−

(2 +
k
∑

i=1

2)
= mex

{

G−

(

k
∑

i=1

2) ,G−

(

k
∑

i=1

2 + 1)}
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= mex

{

G−

(

k
∑

i=1

2) ,G−

(

k
∑

i=1

2)⊕ 1

}

by Lemma 2.1.1

= mex

{

G−

(2 +

k−1
∑

i=1

2) ,G−

(2 +

k−1
∑

i=1

2)⊕ 1

}

= mex{gk−1, gk−1 ⊕ 1}

By the induction hypothesis:

gk−1 =

{

0 if k ≡ 0 mod(2)

2 if k ≡ 1 mod(2),

gk−1 ⊕ 1 =

{

1 if k ≡ 0 mod(2)

3 if k ≡ 1 mod(2).

Then

gk = mex{gk−1, gk−1 ⊕ 1}

=

{

mex{0, 1} if k ≡ 0 mod(2)

mex{2, 3} if k ≡ 1 mod(2)

=

{

2 if k ≡ 0 mod(2)

0 if k ≡ 1 mod(2),

which completes our proof. �

This alternation leads to the following definition:

Definition. For a game G, we say that the genus of G, gg0g1g2g3···, stabilises if there

exists an N ∈ Z≥0 such that ∀ n ≥ N ,

gn+1 = gn ⊕ 2.

Lemma 2.1.4. If Γ (G) = gg0g1g2g3··· has stabilised, then the digits in the superscript

of Γ (G) alternates between gN and gN+1.

Proof. Suppose Γ (G) stabilises at gN for N ∈ Z≥0.

gN+1 = gN ⊕ 2.
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Therefore

gN+2 = gN+1 ⊕ 2 by definition

= (gN ⊕ 2) ⊕ 2 by definition

= gN ⊕ (2 ⊕ 2)

= gN ⊕ 0 by the rules of ⊕

= gN .

We also have

gN+3 = gN+2 ⊕ 2 by definition

= gN ⊕ 2 by previous calculations

= gN+1 by definition.

Continuing as such, we see that the digits in the superscript of Γ (G) alternate between

gN and gN ⊕ 2. �

Proposition 2.1.3 showed that 2 stabilises. In fact, this is true for every genus

symbol, and is one of the key results of genus theory. We present a proof of the

result, even though it is long and technical.

Theorem 2.1.5. ([3], p.422) Let G be an impartial game. Then the genus of G

stabilises.

Proof. We will show the following: for an impartial misère game G, there exists a

non-negative integer N such that ∀ u ≥ N , gu+1 = gu ⊕ 2. Showing this then shows

that for u ≥ N , gu = gu+2 since if gu+1 = gu ⊕ 2 ∀ u ≥ N :

gu+2 = gu+1 ⊕ 2

= (gu ⊕ 2) ⊕ 2

= gu ⊕ 2 ⊕ 2

= gu.

We proceed by induction on the options of the game.
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Suppose G has no options. Then

g = 0,

g0 = 1.

Therefore Γ (G) = 01g1g2···.

Look at gn:

gn = G−

(

G +

n
∑

i=1

2)
= G−

(

n
∑

i=1

2)
= G−

(2+
n−1
∑

i=1

2) .

Thus for n ∈ N, gn is the n− 1th term in the superscript of Γ (2). By Proposition

2.1.3,

gn =

{

2 if n ≡ 1 mod(2)

0 if n ≡ 0 mod(2) and n ≥ 2.

and we see that for n ≥ 1, gn+1 = gn ⊕ 2.

Suppose now we have a game G with options G0, G1, · · · , Gµ, where Γ (G) =

gg0g1g2··· and Γ (Gi) = γ
gi
0
gi
1
gi
2
···

i ∀ i ∈ {0, 1, · · · , µ} such that G0, G1, · · · , Gµ satisfy the

induction hypothesis. That is, for each Gi, there exists ni ∈ Z≥0 such that ∀ u ≥ ni,

gi
u+1 = gi

u ⊕ 2. (2.1)

Let

n = max{ni | i ∈ {0, 1, · · · , µ}}.

Look at gn+1. By Proposition 2.1.2,

gn+1 = mex{gn, gn ⊕ 1, g0
n+1, g

1
n+1, · · · , g

µ
n+1}.

Let gn+1 = m. Then there exists elements in the mex set of gn+1 equal to 0,1, · · ·,

m − 1. Basic calculations give that {gn, gn ⊕ 1} = {t, t + 1} in some order for some

t ≡ 0 mod(2).
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Look at gn+2:

gn+2 = mex{gn+1, gn+1 ⊕ 1, g0
n+2, g

1
n+2, · · · , g

µ
n+2} by Proposition 2.1.2

= mex{gn+1, gn+1 ⊕ 1, g0
n+1 ⊕ 2, g1

n+1 ⊕ 2, · · · , gµ
n+1 ⊕ 2} by Equation (2.1).

We now break the proof into cases. Although the method of proof is similar for

all cases, we include the proofs for completeness.

We first consider two cases: t > m and t < m. We do not consider t = m since

t = gn is in the mex set of gn+1 = m.

1) Suppose t > m.

Then, we can assume without loss of generality, that

g0
n+1 = 0,

g1
n+1 = 1,

g2
n+1 = 2,

· · ·

gm−2
n+1 = m − 2,

gm−1
n+1 = m − 1,

gi
n+1 6= m for i ∈ {m, m + 1, · · · , µ}.

Claim gn+2 = m ⊕ 2.

Suppose gj
n+1 ⊕ 2 = m⊕ 2 for some j ∈ {0, 1, · · · , µ}. Then gj

n+1 = m, which gives

a contradiction since gn+1 = m.

Calculating and reordering the values in the mex, we have

gn+2 =



























































mex{0, 1, 2, · · · , m − 2, m − 1, m, m + 1, gm
n+1 ⊕ 2, · · · , gµ

n+1 ⊕ 2}

if m ≡ 0, 1 mod(4)

mex{0, 1, 2, · · · , m − 4, m − 3, m − 1, m, m + 1,

gm
n+1 ⊕ 2, · · · , gµ

n+1 ⊕ 2}

if m ≡ 2 mod(4)

mex{0, 1, 2, · · · , m − 4, m − 3, m − 1, m, gm
n+1 ⊕ 2, · · · , gµ

n+1 ⊕ 2}

if m ≡ 3 mod(4)
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=

{

m + 2 if m ≡ 0, 1 mod(4)

m − 2 if m ≡ 2, 3 mod(4)

= m ⊕ 2

= gn+1 ⊕ 2.

2) Suppose that t < m.

Then, we can assume without loss of generality, that

g0
n+1 = 0,

g1
n+1 = 1,

g2
n+1 = 2,

· · ·

gt−1
n+1 = t − 1.

−− −− −−

gt+2
n+1 = t + 2,

· · ·

gm−2
n+1 = m − 2,

gm−1
n+1 = m − 1,

gi
n+1 6= m for i ∈ {t, t + 1, m, m + 1, · · · , µ}.

We must now further decompose the proof into ten disjoint cases: (a) through (j).

Again, although the method of proof is similar in each case, we include all but the

proof of (j) for completeness.

a) Suppose gm
n+1, · · · , g

µ
n+1, g

t
n+1, g

t+1
n+1 ∈ Z≥0 \ {t, t + 1, m} and t + 2 6= m, m ⊕ 1.

Claim gn+2 = t ⊕ 2.

Suppose gj
n+1 ⊕ 2 = t ⊕ 2 for some j ∈ {0, 1, · · · , µ}. Then gj

n+1 = t, but

gj
n+1 ∈ Z≥0 \ {t, t + 1, m}, which yields a contradiction.
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Calculating and reordering the values in the mex, we have

gn+2 =















































mex{0, 1, 2, · · · , t − 2, t − 1, t, t + 1, t + 4, · · · (m − 1) ⊕ 2,

gt
n+1 ⊕ 2, gt+1

n+1 ⊕ 2, gm
n+1 ⊕ 2, · · · , gµ

n+1 ⊕ 2, m, m ⊕ 1}

if t ≡ 0 mod(4)

mex{0, 1, 2, · · · , t − 4, t − 3, t, t + 1, t + 2, · · · (m − 1) ⊕ 2,

gt
n+1 ⊕ 2, gt+1

n+1 ⊕ 2, gm
n+1 ⊕ 2, · · · , gµ

n+1 ⊕ 2, m, m ⊕ 1}

if t ≡ 2 mod(4)

=

{

t + 2 if t ≡ 0 mod(4)

t − 2 if t ≡ 2 mod(4)

= t ⊕ 2.

Examine gn+3:

gn+3 =



























mex{t + 2, t + 3, 0, 1, · · · , t − 1, t + 2, · · · (m − 1),

gt
n+1, g

t+1
n+1, g

m
n+1, · · · , g

µ
n+1} if t ≡ 0 mod(4)

mex{t − 2, t− 1, 0, 1, · · · , t − 1, t + 2, · · · (m − 1),

gt
n+1, g

t+1
n+1, g

m
n+1, · · · , g

µ
n+1} if t ≡ 2 mod(4)

= t

= (t ⊕ 2) ⊕ 2

= gn+2 ⊕ 2.

b) Suppose gm
n+1, · · · , g

µ
n+1, g

t
n+1, g

t+1
n+1 ∈ Z≥0 \ {t, t + 1, m} and t + 2 = m.

By Case (2a), this will only affect the calculations when t ≡ 0 mod(4). Take

t ≡ 0 mod(4).

Since m = t + 2,

g0
n+1 = 0,

g1
n+1 = 1,

g2
n+1 = 2,

· · ·

gt−2
n+1 = t − 2,

gt−1
n+1 = t − 1,

gi
n+1 6= m, t, t + 1 for i ∈ {t, t + 1, · · · , µ}.
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Claim gn+2 = t.

Suppose gj
n+1 ⊕ 2 = t. Since t ≡ 0 mod (4), this implies that gj

n+1 = t + 2, but

m = t + 2, which yields a contradiction.

Calculating and reordering the values in the mex, we have

gn+2 = mex{0, 1, 2, · · · , t − 2, t − 1, t + 2, t + 3, gt
n+1 ⊕ 2, gt+1

n+1 ⊕ 2,

gm
n+1 ⊕ 2, · · · , gµ

n+1 ⊕ 2}

= t.

Examine gn+3:

gn+3 = mex{t, t + 1, 0, 1, · · · , t − 1, gt
n+1, g

t+1
n+1, g

m
n+1, · · · , g

µ
n+1}

= t + 2

= t ⊕ 2 since t ≡ 0 mod(4)

= gn+2 ⊕ 2.

c) Suppose gm
n+1, · · · , g

µ
n+1, g

t
n+1, g

t+1
n+1 ∈ Z≥0 \ {t, t + 1, m} and t + 2 = m ⊕ 1.

By Case (2a), this will only affect the calculations when t ≡ 0 mod(4). Take

t ≡ 0 mod(4).

Since m ⊕ 1 = t + 2 and t ≡ 0 mod(4), this implies that m = t + 3. Then,

g0
n+1 = 0,

g1
n+1 = 1,

g2
n+1 = 2,

· · ·

gt−2
n+1 = t − 2,

gt−1
n+1 = t − 1.

−− −− −−

gt+2
n+1 = t + 2,

gi
n+1 6= m, t, t + 1 for i ∈ {t, t + 1, t + 3, · · · , µ} .

Claim gn+2 = t + 1.
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Suppose gj
n+1 ⊕ 2 = t + 1. Since t ≡ 0 mod(4), this implies that gj

n+1 = t + 3.

But m = t + 3, which gives a contradiction.

Calculating and reordering the values in the mex, we have

gn+2 = mex{0, 1, 2, · · · , t − 2, t − 1, t, t + 2, t + 3, gt
n+1 ⊕ 2, gt+1

n+1 ⊕ 2,

gm
n+1 ⊕ 2, · · · , gµ

n+1 ⊕ 2}

= t + 1.

Examine gn+3:

gn+3 = mex{t + 1, t, 0, 1, 2, · · · , t − 1, t + 2, gt
n+1, g

t+1
n+1, g

m
n+1, · · · , g

µ
n+1}

= t + 3

= (t + 1) ⊕ 2 since t ≡ 0 mod (4)

= gn+2 ⊕ 2.

d) Suppose gt
n+1 = t, gm

n+1, · · · , g
µ
n+1, g

t+1
n+1 ∈ Z≥0 \{t+1, m}, and t+3 6= m, m⊕1.

Claim gn+2 = (t ⊕ 2) + 1.

Suppose gj
n+1 ⊕ 2 = (t ⊕ 2) + 1 for some j ∈ {0, 1, · · · , µ}. Then gj

n+1 = t + 1,

which yields a contradiction.

This case is similar to Case (2a), except that t ⊕ 2 is added to the mex set of

gn+2:

t ⊕ 2 =

{

t + 2 if t ≡ 0 mod(4)

t − 2 if t ≡ 2 mod(4).

Calculating and reordering the values in the mex,

gn+2 =















































mex{0, 1, 2, · · · , t − 2, t − 1, t, t + 1, t + 2, t + 4, · · · (m − 1) ⊕ 2,

gt
n+1 ⊕ 2, gt+1

n+1 ⊕ 2, gm
n+1 ⊕ 2, · · · , gµ

n+1 ⊕ 2, m, m ⊕ 1}

if t ≡ 0 mod(4)

mex{0, 1, 2, · · · , t − 4, t − 3, t − 2, t, t + 1, t + 2, · · · (m − 1) ⊕ 2,

gt
n+1 ⊕ 2, gt+1

n+1 ⊕ 2, gm
n+1 ⊕ 2, · · · , gµ

n+1 ⊕ 2, m, m ⊕ 1}

if t ≡ 2 mod(4)

=

{

t + 3 if t ≡ 0 mod(4)

t − 1 if t ≡ 2 mod(4)

= (t ⊕ 2) + 1.
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Then

gn+3 =



























mex{t + 3, t + 2, 0, 1, · · · , t − 1, t, t + 2, · · · (m − 1),

gt
n+1, g

t+1
n+1, g

m
n+1, · · · , g

µ
n+1} if t ≡ 0 mod(4)

mex{t − 1, t − 2, 0, 1, · · · , t − 1, t, t + 2, · · · (m − 1),

gt
n+1, g

t+1
n+1, g

m
n+1, · · · , g

µ
n+1} if t ≡ 0 mod(4)

= t + 1

= ((t ⊕ 2) + 1) ⊕ 2

= gn+2 ⊕ 2.

e) Suppose gt
n+1 = t, gm

n+1, · · · , g
µ
n+1, g

t+1
n+1 ∈ Z≥0 \ {t + 1, m}, and t + 3 = m.

By Case (2d), this will only affect the calculations when t ≡ 0 mod(4). Take

t ≡ 0 mod(4).

Since m = t + 3, m ⊕ 1 = t + 2. Then

g0
n+1 = 0,

g1
n+1 = 1,

g2
n+1 = 2,

· · ·

gt−1
n+1 = t − 1,

gt
n+1 = t.

−− −− −−

gt+2
n+1 = t + 2,

gi
n+1 6= m, t + 1 for i ∈ {t + 1, t + 3, t + 4, · · ·µ}.

Claim gn+2 = t + 1.

Suppose gj
n+1 ⊕ 2 = t + 1. Since t ≡ 0 mod (4), this implies that gj

n+1 = t + 3,

but m = t + 3, which yields a contradiction.

Calculating and reordering the values in the mex, we have

gn+2 = mex{0, 1, 2, · · · , t − 1, t, t + 2, t + 3, gt+1
n+1 ⊕ 2, gm

n+1 ⊕ 2, · · · , gµ
n+1 ⊕ 2}

= t + 1.
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Examine gn+3:

gn+3 = mex{t + 1, t, 0, 1, · · · , t − 1, t, t + 2, gt+1
n+1, g

m
n+1, · · · , g

µ
n+1}

= t + 3

= (t + 1) ⊕ 2 since t ≡ 0 mod(4)

= gn+2 ⊕ 2.

f) Suppose gt
n+1 = t, gm

n+1, · · · , g
µ
n+1, g

t+1
n+1 ∈ Z≥0 \ {t + 1, m}, and t + 3 = m ⊕ 1.

By Case (2d), this will only affect the calculations when t ≡ 0 mod(4). Take

t ≡ 0 mod(4).

Since m ⊕ 1 = t + 3, m = t + 2. Then

g0
n+1 = 0,

g1
n+1 = 1,

g2
n+1 = 2,

· · ·

gt−1
n+1 = t − 1,

gt
n+1 = t,

gi
n+1 6= m, t + 1 for i ∈ {t + 1, t + 2, · · · , µ}.

Claim gn+2 = t.

Suppose gj
n+1 ⊕ 2 = t. Since t ≡ 0 mod (4), this implies that gj

n+1 = t + 2, but

m = t + 2, which yields a contradiction.

Calculating and reordering the values in the mex, we have

gn+2 = mex{0, 1, 2, · · · , t − 2, t − 1, t + 2, t + 3, gt+1
n+1 ⊕ 2, gm

n+1 ⊕ 2,

· · · , gµ
n+1 ⊕ 2}

= t.

Examine gn+3:

gn+3 = mex{t, t + 1, 0, 1, · · · , t − 1, t, gt+1
n+1, g

m
n+1, · · · , g

µ
n+1}
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= t + 2

= t ⊕ 2 since t ≡ 0 mod(4)

= gn+2 ⊕ 2.

g) Suppose gt+1
n+1 = t+1, gt

n+1, g
m
n+1, · · · , g

µ
n+1 ∈ Z≥0 \{t, m}, and m, m⊕1 6= t+2.

Claim gn+2 = t ⊕ 2.

Suppose gj
n+1 ⊕ 2 = t ⊕ 2 for some j ∈ {0, 1, · · · , µ}. Then gj

n+1 = t, but

gj
n+1 ∈ Z≥0 \ {t, m}, which yields a contradiction.

This case is similar to Case (2a), except that (t + 1) ⊕ 2 is added to the mex

set of gn+2:

(t + 1) ⊕ 2 =

{

t + 3 if t ≡ 0 mod(4)

t − 1 if t ≡ 2 mod(4).

Calculating and reordering the values in the mex, we have

gn+2 =



























mex{0, 1, 2, · · · , , t − 1, t, t + 1, t + 3, · · · (m − 1) ⊕ 2,

gt
n+1 ⊕ 2, gm

n+1 ⊕ 2, · · · , gµ
n+1 ⊕ 2, m, m ⊕ 1} if t ≡ 0 mod(4)

mex{0, 1, 2, · · · , t − 3, t − 1, t, t + 1, t + 2, · · · (m − 1) ⊕ 2,

gt
n+1 ⊕ 2, gm

n+1 ⊕ 2, · · · , gµ
n+1 ⊕ 2, m, m ⊕ 1} if t ≡ 2 mod(4)

=

{

t + 2 if t ≡ 0 mod(4)

t − 2 if t ≡ 2 mod(4)

= t ⊕ 2.

Examine gn+3:

gn+3 =



























mex{t + 2, t + 3, 0, 1, · · · , t − 1, t + 1, · · · (m − 1),

gt
n+1, g

t+1
n+1, g

m
n+1, · · · , g

µ
n+1} if t ≡ 0 mod(4)

mex{t − 2, t− 1, 0, 1, · · · , t − 1, t + 1, · · · (m − 1),

gt
n+1, g

t+1
n+1, g

m
n+1, · · · , g

µ
n+1} if t ≡ 0 mod(4)

= t

= (t ⊕ 2) ⊕ 2

= gn+2 ⊕ 2.

h) Suppose gt+1
n+1 = t + 1, gt

n+1, g
m
n+1, · · · , g

µ
n+1 ∈ Z≥0 \ {t, m}, and m = t + 2.
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By Case (2g), this will only affect the calculations when t ≡ 0 mod(4). Take

t ≡ 0 mod(4).

Since m = t + 2,

g0
n+1 = 0,

g1
n+1 = 1,

g2
n+1 = 2,

· · ·

gt−1
n+1 = t − 1.

−− −− −−

gt+1
n+1 = t + 1,

gi
n+1 6= m, t for i ∈ {t, t + 2, t + 3, · · · , µ}.

Claim gn+2 = t.

Suppose gj
n+1 ⊕ 2 = t. Since t ≡ 0 mod (4), this implies that gj

n+1 = t + 2, but

m = t + 2, which yields a contradiction.

Calculating and reordering the values in the mex, we have

gn+2 = mex{0, 1, 2, · · · , t − 2, t − 1, t + 2, t + 3, gt
n+1 ⊕ 2, gm

n+1 ⊕ 2,

· · · , gµ
n+1 ⊕ 2}

= t.

Examine gn+3:

gn+3 = mex{t, t + 1, 0, 1, · · · , t − 1, t + 1, gt
n+1, g

m
n+1, · · · , g

µ
n+1}

= t + 2

= t ⊕ 2 since t ≡ 0 mod(4)

= gn+2 ⊕ 2.

i) Suppose gt+1
n+1 = t + 1, gt

n+1, g
m
n+1, · · · , g

µ
n+1 ∈ Z≥0 \ {t, m}, and m ⊕ 1 = t + 2.

By Case (2g), this will only affect the calculations when t ≡ 0 mod(4). Take

t ≡ 0 mod(4).
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Since m ⊕ 1 = t + 2, m = t + 3. Then

g0
n+1 = 0,

g1
n+1 = 1,

g2
n+1 = 2,

· · ·

gt−1
n+1 = t − 1.

−− −− −−

gt+1
n+1 = t + 1,

gt+2
n+1 = t + 2,

gi
n+1 6= m, t for i ∈ {t, t + 3, t + 4, · · · , µ}.

Claim gn+2 = t + 1.

Suppose gj
n+1 ⊕ 2 = t + 1. Since t ≡ 0 mod (4), this implies that gj

n+1 = t + 3,

but m = t + 3, which yields a contradiction.

Calculating and reordering the values in the mex, we have

gn+2 = mex{0, 1, 2, · · · , t − 1, t, t + 2, t + 3, gt
n+1 ⊕ 2, gm

n+1 ⊕ 2, · · · , gµ
n+1 ⊕ 2}

= t + 1.

Examine gn+3:

gn+3 = mex{t + 1, t, 0, 1, · · · , t − 1, t + 1, t + 2, gt
n+1, g

m
n+1, · · · , g

µ
n+1}

= t + 3

= (t + 1) ⊕ 2 since t ≡ 0 mod(4)

= gn+2 ⊕ 2.

j) Suppose gt
n+1 = t, gt+1

n+1 = t + 1, gm
n+1, · · · , g

µ
n+1 ∈ Z≥0 \ {m}.

The proof of this is the same as the proof of Case (1).

Thus, for all permutations of gn, gn ⊕1, and gi
n+1, we have found an index N such

that gN+1 = gN ⊕ 2.
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Claim: ∀ u ≥ N , u ∈ N, gu+1 = gu ⊕ 2. We will show this by induction on u.

u = N is precisely what was just shown. u = N + 1 is shown similarly.

Suppose that ∀ u ∈ N such that N ≤ u < k,

gu+1 = gu ⊕ 2. (2.2)

Suppose u = k. Then

gk+1 = mex{gk, gk ⊕ 1, g0
k+1, g

1
k+1, · · · , g

µ
k+1}

= mex{gk−1 ⊕ 2, (gk−1 ⊕ 2) ⊕ 1, g0
k+1, g

1
k+1, · · · , g

µ
k+1} by Equation (2.2)

= mex{gk−2, gk−2 ⊕ 1, g0
k+1, g

1
k+1, · · · , g

µ
k+1} by Equation (2.2)

= mex{gk−2, gk−2 ⊕ 1, g0
k ⊕ 2, g1

k ⊕ 2, · · · , gµ
k ⊕ 2} by Equation (2.1)

= mex{gk−2, gk−2 ⊕ 1, g0
k−1, g

1
k−1, · · · , g

µ
k−1} by Equation (2.1)

= gk−1 by Proposition 2.1.2

= gk ⊕ 2 by Equation (2.2).

This completes both inductions. Therefore the genus of any game eventually

stabilises. �

Notation. Consider an impartial game G with Γ (G) = gg0g1g2g3···. By Theorem

2.1.5, G stabilises. Therefore there exists a smallest non-negative integer N such

that ∀ u ≥ N , gu = gu+2 with gu+1 = gu ⊕ 2. We abbreviate the genus symbol to

gg0g1···gN (gN⊕2).

Corollary 2.1.6. Given a game G with Γ (G) = gg0g1g2g3···, let N be the first index at

which gN+1 = gN ⊕ 2. Then ∀ u ≥ N , gu = gu+2 provided the genus of all the options

of G has stabilised by N .

The corollary, which follows from the inductions in the previous proof, gives us

the following calculational shortcut: once the genera of all the options of G have

stabilised and G is exhibiting stabilizing behaviour, we can stop calculating the genus

of G. It is not enough to stop calculations simply when the genus exhibits stabilizing

behaviour, as the following example shows:

Example 2.1.2. Consider the octal game 0.3122. That is:
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1) We can remove one token no matter the size of the heap.

2) We can remove two tokens if the heap has size two.

3) We can remove three tokens if the heap has strictly more than three tokens.

4) We can remove four tokens if the heap has strictly more than four tokens.

5) We cannot remove n tokens for n ≥ 5.

Calculations give the genera of the first six heaps:

heap genus

h0 0120

h1 1031

h2 220

h3 002

h4 21420

h5 031

h6 113

We now calculate the genus of h7. Initial calculations show us that Γ (h7) =

320g2g3···, and we see that G−(h7 +2) = G−(h7)⊕2. However, the genus of an option of

h7, namely, Γ (h4), has not yet stabilised, and further calculations show that Γ (h7) =

32031.

2.2 Using the Genus to Classify Impartial Misère Games

We begin by examining misère Nim:

Proposition 2.2.1. Given a Nim heap m,

Γ (m) =















0120 if m = 0

1031 if m = 1

mm(m⊕2) else.
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Proof. When m = 0, Γ (m) = 0120 by the base case of Theorem 2.1.5.

Examine m = 1. There is only one move:1 // 0.
Then, by Proposition 2.1.2,

G+(1) = mex{G+(0)}
= mex{0}

= 1,

G−(1) = mex{G−(0}
= mex{1}

= 0,

G−(1 + 2) = mex{G−(2),G−(1),G−(1) ⊕ 1}

= mex{2, 1, 0}

= 3,

G−(1+ 2 + 2) = mex{G−(2+ 2),G−(1+ 2),G−(1 + 2) ⊕ 1}

= mex{0, 3, 2}

= 1.

Therefore, Γ (1) = 1031.

For m ≥ 2, we proceed by induction on m.

When m = 2, Γ (m) = 220 by Proposition 2.1.3.

Suppose true for m < k. Consider k. The moves from k arek −k // 0k −k+1 // 1k −k+2 // 2
· · ·k −2 // k− 2k −1 // k− 1.
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By induction, the genera of the options are 0120, 1031, and ii(i⊕2) for i ∈ {2, 3, · · · , k−1}

respectively. By Proposition 2.1.2, Γ (k) = kk(k⊕2), as required. �

Impartial misère games are classified into two types: tame and wild. The genus is

the tool necessary to make this classification. As under the normal play convention,

Nim plays a vital role:

Definition. Given an impartial misère game G, G is tame if Γ (G) is one of the

misère Nim genus symbols given in Proposition 2.2.1, 002, or 113, and, for every

option G′ of G, G′ is tame. An impartial misère game is wild if it is not tame.

Definition. If a game Γ (G) equals one of the misère Nim genus symbols given in

Proposition 2.2.1, 002, or 113, but we do not know anything about its options, we say

that Γ (G) has a tame value.

There is a difference between being tame and have a tame value. We can only

determine whether a game is tame if we know about its options. A tame game has

a tame value, but the reverse is not necessarly true. A game can have a tame value

but have a wild game as one of its followers.

Note: Some sources (notably [3], p.425) allow a game to be called tame even if

it has wild positions in its options, provided that these wild positions satisfy certain

conditions. However, we are taking the convention of [4] and taking that a tame game

“behaves”, for all positions, exactly like Nim. Thus, if in the followers of a position

G, there is a wild position, then we consider G to be wild.

If a game is tame, we say that under the misère play convention, this game behaves

like misère Nim. Given a game G which is the finite disjunctive sum of Nim heaps,

if we play in this game, we play to a disjunctive sum of Nim heaps. Playing under

the misère play convention, Γ (G) has a tame value, as do all of its followers, i.e. it

is tame. If another impartial game which has this property, then it is behaving like

the way a disjunctive sum of Nim heaps behaves and so it is behaving the way misère

Nim does. However, if an impartial game does not have its genus equal to a tame

value, or has wild games as its options, which never occurs with a disjunctive sum of

Nim heaps, then it is not behaving the way misère Nim behaves.
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Under the normal play convention, all impartial games behave like Nim. That is,

under normal play, every game is “normally tame” and there are no “normally wild”

games. The initial hope that we can easily translate the Sprague-Grundy Theorem

for normal play impartial games to misère impartial games would require that all

impartial misère game be tame. Sadly, this is not the case as there is a wealth of

examples of impartial misère games which are not tame. One such game is discussed

in the following example:

Example 2.2.1. Consider a heap of size 8 in the octal game 0.123. The genus symbol

of this game is 21420 and so a heap of size 8 in 0.123 is wild, and so, the game 0.123

is wild.

2.2.1 Getting Wild Games from Tame Games

A standard trick in game theory is the following - given a property P , and a game

G, if all options of G have property P , then show that G also has property P . This

is exactly how we proved Theorem 2.1.5.

However, we cannot use this method in determining whether a position is tame.

That is, all options of a position being tame does not imply that the position itself is

tame.

Example 2.2.2. Returning to Example 2.1.2, consider the game 0.3122, and the

genera of the first three heaps:

heap genus

h0 0120

h1 1031

h2 220

h3 002

Consider h4. There are two moves from h4:

h4
−3 // h1

h4
−1 // h3.

By Proposition 2.1.2, Γ (h4) = 21420. That is, h4 is wild, yet all of its options are

tame.
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Of course, this does not mean that a game with only tame options is automatically

wild. Obviously, given a game with only tame options, often this games is also tame,

such as h1, h2, and h3 in Example 2.2.2. However, given a game with only tame

options, we can classify those into games which will be tame and those which will be

wild.

Theorem 2.2.2. ([3], p. 432) Suppose G is a game with only tame options. Then

G is wild if and only if amongst the options of G, G has options with genera equal to

one, but not both, of 0120 or 1031, and options with genera equal to one, but not both,

of 002 or 113.

Proof. Let X ⊂ Z≥2 such that |X| < ∞, and for n ∈ X, there is an option of G with

genera nn(n⊕2). Let m = mex{0, 1, {n | n ∈ X}}. Note that m ≥ 2.

We break the proof into eleven small cases:

1) Suppose G has options with genera equal to 0120 and 002, but no options with

genera equal to either 1031 or 113. By Proposition 2.1.2, Γ (G) = 1m···, which is

wild.

2) Suppose G has options with genera equal to 0120 and 113, but no options with

genera equal to either 1031 or 002, which are the only tame games with the first

superscript equal to zero. By Proposition 2.1.2, Γ (G) = m0···, which is wild.

3) Suppose G has options with genera equal to 1031 and 002, but no options with

genera equal to either 0120 or 113, which are the only tame games with the first

superscript equal to one. By Proposition 2.1.2, Γ (G) = m1···, which is wild.

4) Suppose G has options with genera equal to 1031 and 113, but no options with

genera equal to either 0120 or 002. By Proposition 2.1.2, Γ (G) = 0m···, which is

wild.

5) Suppose G has options with genera equal to 0120 and 1031. By Proposition 2.1.2,

Γ (G) = mm(m⊕2), which is tame.

6) Suppose G has options with genera equal to 002 and 113. By Proposition 2.1.2,

Γ (G) = mm(m⊕2), which is tame.
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7) Suppose G has no options with genera equal to 0120, 1031, 002, 113. That is, all

options of G are equal to nn(n⊕2) for n ∈ X. By Proposition 2.1.2, Γ (G) = 002,

which is tame.

8) Suppose that G has an option with genus equal to 0120, and all other options with

genera equal to nn(n⊕2) for n ∈ X. By the definition of genus, Γ (G) = 1g0g1g2···.

Since the only tame games with first superscript equal to zero are 1031 and 002,

neither of which are options of G, Γ (G) = 10g1g2···. Since the only tame games with

second superscript equal to three are 1031 and 113, neither of which are options of G,

0⊕1 = 1, and an option of G has genus 0120, by Proposition 2.1.2, Γ (G) = 103g2···.

Since there is an option with genus equal to 0120, g3 ≥ 1. Since the only tame

games with third superscript equal to one are 1031 and 113, neither of which are

options of G and 3 ⊕ 1 = 2, by Proposition 2.1.2, Γ (G) = 1031, which is tame.

9) Suppose that G has an option with genus equal to 1031, and all other options with

genera equal to nn(n⊕2) for n ∈ X. By the definition of genus, Γ (G) = 0g0g1g2···.

Since there is an option with genus equal to 1031, g0 ≥ 1. Since the only tame games

with first superscript equal to one are 113 and 0120, neither of which are options

of G, Γ (G) = 01g1g2···. Since the only tame games with second superscript equal

to two are 0120 and 002, neither of which is not an option of G, and 1 ⊕ 1 = 0,

by Proposition 2.1.2, Γ (G) = 012g2···. Since the only tame games with third

superscript equal to zero are 0120 and 002, neither of which are options of G, and

2 ⊕ 1 = 3, by Proposition 2.1.2, Γ (G) = 0120, which is tame.

10) Suppose that G has an option with genus equal to 002, and all other options with

genera equal to nn(n⊕2) for n ∈ X. By the definition of genus, Γ (G) = 1g0g1g2···.

Since G has an option with genus 002, g0 ≥ 1. Since the only tame games with

first superscript equal to one are 0120 and 113, neither of which are options of

G, by the definition of genus, Γ (G) = 11g1g2···. Since the only tame games with

second superscript equal to three are 1031 and 113, neither of which are options of

G, 1 ⊕ 1 = 0, and G has an option with genus equal to 002, by Proposition 2.1.2,

Γ (G) = 113, which is tame.

11) Suppose that G has an option with genus equal to 113, and all other options with
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genera equal to nn(n⊕2) for n ∈ X. By the definition of genus, Γ (G) = 0g0g1g2···.

Since the only tame games with first superscript equal to zero are 1031 and 002,

neither of which are options of G, Γ (G) = 00g1g2···. Since the only tame games

with second superscript equal to two are 002 and 0120, neither of which are options

of G and 0 ⊕ 1 = 1, by Proposition 2.1.2, Γ (G) = 002, which is tame.

�

2.3 Using the Genus to Determine Outcome Classes

Another important use of genus is that obtain the outcome class of an impartial game

G played under the misère game convention through its genus symbol.

Proposition 2.3.1. ([3], p.423) Take an impartial game G. Then under the misère

play convention, G ∈ P ⇐⇒ the first superscript in the genus symbol of G equals 0.

Proof. We will show this by induction on the options of a game.

Suppose G is an impartial game with no options. Then G ∈ N and

G−(G) = 1

6= 0.

Suppose now H is an impartial game whose only options are to move to G. Then

H ∈ P and

G−(H) = mex{G−(G)}

= mex{1}

= 0.

which shows the base case.

Take now an arbitrary game G whose options satisfy the induction hypothesis.

Suppose the first superscript of the genus of G equals 0.

G−(G) = mex{G−(G0), · · · ,G
−(Gµ)}

0 = mex{G−(G0), · · · ,G
−(Gµ)}.
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Therefore, ∀ i ∈ {0, 1, · · · , µ}, G−(Gi) 6= 0. By the induction hypothesis, Gi ∈ N

for each i, therefore G ∈ P.

Suppose the first superscript of the genus of G does not equal 0. Then there exists

an option of G, say Gj such that G−(Gj) = 0. By the induction hypothesis, Gj ∈ P,

so G ∈ N . �

Thus, the genus is the perfect tool to encompass both the normal play and misère

play outcome class, since by combining Proposition 1.3.3 and Proposition 2.3.1, we

are given the outcome class in both normal and misère play. In the literature, when

this is the only information which is sought, the genus of a game is abbreviated to

gg0. However, we will not use this convention as we are often interested in whether

a game is tame or not which cannot be determined with only the base and the first

superscript of the genus.

2.4 The Algebraic Structure of Tame Games

2.4.1 The Sum of Tame Games

Before we begin, we recall the following result from [1]:

Lemma 2.4.1. For games G, and H, G+(G + H) = G+(G) ⊕ G+(H). ([1], p.114)

Theorem 2.4.2. ([4], p.145) Let G and H be two tame games. Then G + H is a

tame game also with:

Γ (G + H) =



























Γ (H) if Γ (G) = 0120

0120 if Γ (G) = Γ (H) = 1031

(n ⊕ 1)(n⊕1)(n⊕3) if Γ (G) = 1031, Γ (H) = nn(n⊕2)

(n ⊕ m)(n⊕m)(n⊕m⊕2) if Γ (G) = nn(n⊕2), Γ (H) = mm(m⊕2).

Proof. We proceed by induction on the options of the sum of G and H .

Define the following games:

• G0 is a game which has no options. Then Γ (G0) = 0120.

• G1 is a game whose only option is to G0. Then Γ (G1) = 1031.
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• G2 is a game whose only options are to G0 and G1. Then Γ (G2) = 220.

Since G0 has no options, for any game H , the options of G0+H are the same as the

options of H . Since the genus of a game depends only on the options, Γ (G0 + H) =

Γ (H).

Suppose we have the sum of games G1 and G1. Then

G+(G1 + G1) = G+(G1) ⊕ G+(G1) by Lemma 2.4.1

= 1 ⊕ 1

= 0,

G−(G1 + G1) = mex{G−(G1 + G0),G
−(G0 + G1)}

= mex{G−(G1)}

= mex{0}

= 1,

G−(G1 + G1 + 2) = mex{G−(G1 + G1),G
−(G1 + G1 + 1),G−(G1 + G0 + 2),

G−(G0 + G1 + 2)}
= mex{ G−(G1 + G1),G

−(G1 + G1) ⊕ 1,G−(G1 + G0 + 2),
G−(G0 + G1 + 2)} by Lemma 2.1.1

= mex{1, 0,G−(G1 + 2)}
= mex{1, 0, 3}

= 2,

G−(G1 + G1 + 2+ 2) = mex{G−(G1 + G1 + 2),G−(G1 + G1 + 2 + 1),
G−(G1 + G0 + 2 + 2),G−(G0 + G1 + 2+ 2)}

= mex{G−(G1 + G1 + 2),G−(G1 + G1 + 2) ⊕ 1,

G−(G1 + G0 + 2 + 2),G−(G0 + G1 + 2+ 2)}
by Lemma 2.1.1

= mex{2, 3,G−(G1 + 2+ 2)}
= mex{2, 3, 1}

= 0.
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Therefore Γ (G1 + G1) = 0120.

Suppose we have the sum of games G1 and G2. Then

G+(G1 + G2) = G+(G1) ⊕ G+(G2) by Lemma 2.4.1

= 1 ⊕ 2

= 3,

G−(G1 + G2) = mex{G−(G0 + G2),G
−(G1 + G0),G

−(G1 + G1)}

= mex{G−(G2),G
−(G1), 1}

= mex{2, 0, 1}

= 3,

G−(G1 + G2 + 2) = mex{G−(G1 + G2),G
−(G1 + G2 + 1),G−(G0 + G2 + 2),

G−(G1 + G0 + 2),G−(G1 + G1 + 2)}
= mex{G−(G1 + G2),G

−(G1 + G2) ⊕ 1,G−(G0 + G2 + 2),
G−(G1 + G0 + 2),G−(G1 + G1 + 2)} by Lemma 2.1.1

= mex{3, 2,G−(G2 + 2),G−(G1 + 2), 2}
= mex{3, 2, 0, 3, 2}

= 1,

G−(G1 + G2 + 2+ 2) = mex{G−(G1 + G2 + 2),G−(G1 + G2 + 2+ 1),
G−(G0 + G2 + 2+ 2),G−(G1 + G0 + 2+ 2),
G−(G1 + G1 + 2+ 2)}

= mex{G−(G1 + G2 + 2),G−(G1 + G2 + 2) ⊕ 1,

G−(G0 + G2 + 2+ 2),G−(G1 + G0 + 2+ 2),
G−(G1 + G1 + 2+ 2)} by Lemma 2.1.1

= mex{1, 0,G−(G2 + 2+ 2),G−(G1 + 2+ 2), 0}
= mex{1, 0, 2, 1, 0}

= 3.

Therefore Γ (G1 + G2) = 331 = (1 ⊕ 2)(1⊕2)((1⊕2)⊕2).
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Suppose we have the sum of games G2 and G2. Then

G+(G2 + G2) = G+(G2) ⊕ G+(G2) by Lemma 2.4.1

= 2 ⊕ 2

= 0,

G−(G2 + G2) = mex{G−(G0 + G2),G
−(G1 + G2)}

= mex{G−(G2), 3}

= mex{2, 3}

= 0,

G−(G2 + G2 + 2) = mex{G−(G2 + G2),G
−(G2 + G2 + 1),G−(G0 + G2 + 2),

G−(G1 + G2 + 2)}
= mex{G−(G2 + G2),G

−(G2 + G2) ⊕ 1,G−(G0 + G2 + 2),
G−(G1 + G2 + 2)} by Lemma 2.1.1

= mex{0, 1,G−(G2 + 2), 1}
= mex{0, 1, 0, 1}

= 2,

G−(G2 + G2 + 2+ 2) = mex{G−(G2 + G2 + 2),G−(G2 + G2 + 2+ 1),
G−(G0 + G2 + 2+ 2),G−(G1 + G2 + 2+ 2)}

= mex{G−(G2 + G2 + 2),G−(G2 + G2 + 2) ⊕ 1,

G−(G0 + G2 + 2+ 2),G−(G1 + G2 + 2+ 2)}
by Lemma 2.1.1

= mex{2, 3,G−(G2 + 2+ 2), 3}
= mex{2, 3, 2, 3}

= 0.

Therefore Γ (G2 + G2) = 002 = (2 ⊕ 2)(2⊕2)((2⊕2)⊕2).

This completes the base case.

Suppose now we have games G, and H , such that the induction hypothesis holds

for G + H .
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We break our proof into the following three cases: Γ (G) = 0120, Γ (G) = 1031, and

Γ (G) = nn(n⊕2) for n ∈ Z≥0.

1) Suppose now we have games G and H , with Γ (G) = 0120. Claim Γ (G + H) =

Γ (H).

We further decompose our proof into three cases: Γ (H) = 0120, Γ (H) = 1031, and

Γ (H) = nn(n⊕2) for n ∈ Z≥0.

a) Suppose we have games G and H , both having genus 0120. Claim that G + H

has genus 0120.

G+(G + H) = G+(G) ⊕ G+(H) by Lemma 2.4.1

= 0 ⊕ 0

= 0,

G−(G + H) = mex{{G−(G′ + H) | G′ an option of G},

{G−(G + H ′) | H ′ an option of H}}

= mex{{G−(G′) | G′ an option of G},

{G−(H ′) | H ′ an option of H}} by induction.

Since G−(G) = 1, there is some option of G, say G′, such that G−(G′) = 0 and

all other options of G have G− value either zero or value greater than one. The

same holds for H . Therefore G−(G + H) = 1.

G−(G + H + 2) = mex{G−(G + H),G−(G + H + 1)
{G−(G′ + H + 2) | G′ an option of G},

{G−(G + H ′ + 2) | H ′ an option of H}}

= mex{G−(G + H),G−(G + H) ⊕ 1,

{G−((G′ + 2) + H) | G′ an option of G},

{G−((H ′ + 2) + G) | H ′ an option of H}}

by Lemma 2.1.1

= mex{1, 0, {G−((G′ + 2) + H) | G′ an option of G},
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{G−((H ′ + 2) + G) | H ′ an option of H}}

= mex{0, 1, {G−(G′ + 2) | G′ an option of G},

{G−(H ′ + 2) | H ′ an option of H}} by induction.

Suppose there is some G′ such that G−(G′ + 2) = 2. Then G−(G + 2) 6= 2,

which is a contradiction. Similarly for H . Therefore G−(G + H + 2) = 2.

G−(G + H + 2 + 2) = mex{G−(G + H + 2),G−(G + H + 2 + 1),
{G−(G′ + H + 2+ 2) | G′ an option of G},

{G−(G + H ′ + 2+ 2) | H ′ an option of H}}

= mex{G−(G + H + 2),G−(G + H + 2) ⊕ 1,

{G−((G′ + 2+ 2) + H) | G′ an option of G},

{G−((H ′ + 2 + 2) + G) | H ′ an option of H}}

by Lemma 2.1.1

= mex{2, 3,

{G−((G′ + 2+ 2) + H) | G′ an option of G},

{G−((H ′ + 2 + 2) + G) | H ′ an option of H}}

= mex{2, 3, {G−(G′ + 2+ 2) | G′ an option of G},

{G−(H ′ + 2+ 2) | H ′ an option of H}}

by induction.

Suppose there is some G′ such that G−(G′+2+2) = 0. Then G−(G+2+2) 6= 0,

which is a contradiction. Therefore G−(G + H + 2 + 2) = 0.

Therefore, the genus of G + H is 0120.

b) Suppose now that H has genus 1031. Claim that G + H has genus 1031.

G+(G + H) = G+(G) ⊕ G+(H) by Lemma 2.4.1

= 0 ⊕ 1

= 1,

G−(G + H) = mex{{G−(G′ + H) | G′ an option of G},
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{G−(G + H ′) | H ′ an option of H}}

= mex{{G−(G′) ⊕ 1 | G′ an option of G},

{G−(H ′) | H ′ an option of H}} by induction.

For every option H ′, G−(H ′) ≥ 1 since G−(H) = 0.

Suppose there exists option of G, G′ such that G−(G′)⊕1 = 0. Then G−(G′) =

1, which contradicts G−(G) = 1. Therefore G−(G + H) = 0.

G−(G + H + 2) = mex{G−(G + H),G−(G + H + 1),
{G−(G′ + H + 2) | G′ an option of G},

{G−(G + H ′ + 2) | H ′ an option of H}}

= mex{G−(G + H),G−(G + H) ⊕ 1,

{G−((G′ + 2) + H) | G′ an option of G},

{G−((H ′ + 2) + G) | H ′ an option of H}}

by Lemma 2.1.1

= mex{0, 1, {G−((G′ + 2) + H) | G′ an option of G},

{G−((H ′ + 2) + G) | H ′ an option of H}}

= mex{0, 1, {G−(G′ + 2) ⊕ 1 | G′ an option of G},

{G−(H ′ + 2) | H ′ an option of H}} by induction.

Since G−(H + 2) = 3 and G−(H) = 0, there exists an option of H , H ′, such

that G−(H ′) = 2, and no option H ′ such that G−(H ′ + 2) = 3.

Suppose there exists option of G, G′, such that G−(G′ + 2) ⊕ 1 = 3. Then

G−(G′ + 2) = 2, which contradicts G−(G + 2) = 2.

Therefore G−(G + H + 2) = 3.

G−(G + H + 2+ 2) = mex{G−(G + H + 2),G−(G + H + 2+ 1),
{G−(G′ + H + 2 + 2) | G′ an option of G},

{G−(G + H ′ + 2 + 2) | H ′ an option of H}}

= mex{G−(G + H + 2),G−(G + H + 2) ⊕ 1,

{G−((G′ + 2 + 2) + H) | G′ an option of G},
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{G−((H ′ + 2+ 2) + G) | H ′ an option of H}}

by Lemma 2.1.1

= mex{3, 2,

{G−((G′ + 2 + 2) + H) | G′ an option of G},

{G−((H ′ + 2+ 2) + G) | H ′ an option of H}}

= mex{3, 2,

{G−(G′ + 2+ 2) ⊕ 1 | G′ an option of G},

{G−(H ′ + 2+ 2) | H ′ an option of H}}

by induction.

Since G−(H + 2+ 2) = 1 and G−(H + 2) = 3, there exists an option of H , H ′,

such that G−(H ′ + 2) = 0, and no option of H such that G−(H ′ + 2 + 2) = 1.

Suppose there exists option of G, G′, such that G−(G′ + 2+ 2) ⊕ 1 = 1. Then

G−(G′ + 2+ 2) = 0, which contradicts G−(G + 2+ 2) = 0.

Therefore G−(G + H + 2+ 2) = 1.

Thus, Γ (G + H) = 1031.

c) Suppose now that H has genus nn(n⊕2) for n ∈ Z≥0. Claim that G + H has

genus nn(n⊕2).

G+(G + H) = G+(G) ⊕ G+(H) by Lemma 2.4.1

= 0 ⊕ n

= n,

G−(G + H) = mex{{G−(G′ + H) | G′ an option of G},

{G−(G + H ′) | H ′ an option of H}}

= mex{{G−(G′ + H) | G′ an option of G},

{G−(H ′) | H ′ an option of H}} by induction.

By induction, we have

G−(G′ + H) =

{

G−(G′) ⊕ n if Γ (G′) 6= 1031

1 ⊕ n if Γ (G′) = 1031.
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Consider when Γ (G′) 6= 1031. Suppose that G−(G′)⊕n = n. Then G−(G′) = 0,

and since G′ is tame, Γ (G′) = 002 or 1031. If Γ (G′) = 002, then Γ (G) 6= 0120,

and we took Γ (G′) 6= 1031.

Consider now when Γ (G′) = 1031. We see that 1 ⊕ n 6= n.

Since G−(H) = n, ∀ u < n, there exists option H ′ of H such that G−(H ′) = u.

Therefore G−(G + H) = n.

G−(G + H + 2) = mex{G−(G + H),G−(G + H + 1)
{G−(G′ + H + 2) | G′ an option of G},

{G−(G + H ′ + 2) | H ′ an option of H}}

= mex{G−(G + H),G−(G + H) ⊕ 1,

{G−((G′ + 2) + H) | G′ an option of G},

{G−((H ′ + 2) + G) | H ′ an option of H}}

by Lemma 2.1.1

= mex{n, n ⊕ 1, {G−((G′ + 2) + H) | G′ an option of G},

{G−((H ′ + 2) + G) | H ′ an option of H}}

= mex{n, n ⊕ 1, {G−((G′ + 2) + H | G′ an option of G},

{G−(H ′ + 2) | H ′ an option of H}} by induction.

By induction, we have

G−(G + H + 2) =

{

G−(G′) ⊕ n ⊕ 2 if Γ (G′) 6= 1031

1 ⊕ n ⊕ 2 if Γ (G′) = 1031.

Consider when Γ (G′) 6= 1031. Suppose that G−(G′) ⊕ n ⊕ 2 = n ⊕ 2. Then

G−(G′) = 0, and since G′ is tame, Γ (G′) = 002 or 1031. If Γ (G′) = 002, then

Γ (G) 6= 0120, and we took Γ (G′) 6= 1031.

Consider now when Γ (G′) = 1031. We see that 1 ⊕ n ⊕ 2 6= n ⊕ 2.

Since G−(H + 2) = n ⊕ 2, ∀ u < n, there exists option H ′ of H such that

G−(H ′ + 2) = u.

Therefore G−(G + H + 2) = n ⊕ 2.
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As per Corollary 2.1.6, we must also show that G−(G + H + 2 + 2) = n. The

argument to show this is similar to the one given above.

2) Suppose we have games G and H with Γ (G) = 1031, and Γ (H) 6= 0120. Claim

Γ (G + H) =

{

0120 if Γ (G) = Γ (H) = 1031

(n ⊕ 1)(n⊕1)(n⊕3) if Γ (G) = 1031, Γ (H) = nn(n⊕2).

a) Suppose that Γ (H) = 1031. Claim that Γ (G + H) = 0120.

G+(G + H) = G+(G) ⊕ G+(H) by Lemma 2.4.1

= 1 ⊕ 1

= 0,

G−(G + H) = mex{{G−(G′ + H) | G′ an option of G},

{G−(G + H ′) | H ′ an option of H}}

= mex{{G−(G′) ⊕ 1 | G′ an option of G},

{G−(H ′) ⊕ 1 | H ′ an option of H}} by induction.

Suppose there exists an option of G, G′ with G−(G′)⊕1 = 1. Then G−(G′) = 0,

which contradicts G−(G) = 0. Similarly, there does not exist an option of H ,

H ′ with G−(H ′) = 1.

Claim: since Γ (G) = 1031 and G tame, there is an option G′ with Γ (G′) = 0120.

Since G+(G) = 1, there exists option G′ with G+(G′) = 0. Since G′ is tame,

Γ (G′) = 002 or 0120. Since G−(G) = 0, G−(G′) 6= 0, so Γ (G′) = 0120.

Thus, there exists an option of G, G′ with G−(G′) = 1. Then G−(G′) ⊕ 1 = 0,

so G−(G + H) = 1.

G−(G + H + 2) = mex{G−(G + H),G−(G + H + 1)
{G−(G′ + H + 2) | G′ an option of G},

{G−(G + H ′ + 2) | H ′ an option of H}}

= mex{G−(G + H),G−(G + H) ⊕ 1,

{G−((G′ + 2) + H) | G′ an option of G},

{G−((H ′ + 2) + G) | H ′ an option of H}}
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by Lemma 2.1.1

= mex{1, 0, {G−((G′ + 2) + H) | G′ an option of G},

{G−((H ′ + 2) + G) | H ′ an option of H}}

= mex{0, 1, {G−(G′ + 2) ⊕ 1 | G′ an option of G},

{G−(H ′ + 2) ⊕ 1 | H ′ an option of H}}

by induction.

Suppose there is some G′ such that G−(G′ + 2)⊕ 1 = 2. Then G−(G′ + 2) = 3,

which contradicts G−(G + 2) = 3. Similarly there does not exist an option of

H , H ′ with G−(H ′ + 2) ⊕ 1 = 2. Therefore G−(G + H + 2) = 2.

G−(G + H + 2+ 2) = mex{G−(G + H + 2),G−(G + H + 2+ 1),
{G−(G′ + H + 2 + 2) | G′ an option of G},

{G−(G + H ′ + 2 + 2) | H ′ an option of H}}

= mex{G−(G + H + 2),G−(G + H + 2) ⊕ 1,

{G−((G′ + 2 + 2) + H) | G′ an option of G},

{G−((H ′ + 2+ 2) + G) | H ′ an option of H}}

by Lemma 2.1.1

= mex{2, 3,

{G−((G′ + 2 + 2) + H) | G′ an option of G},

{G−((H ′ + 2+ 2) + G) | H ′ an option of H}}

by Lemma 2.1.1

= mex{2, 3,

{G−(G′ + 2+ 2) ⊕ 1 | G′ an option of G},

{G−(H ′ + 2+ 2) ⊕ 1 | H ′ an option of H}}

by induction.

Suppose there is some G′ such that G−(G′+2+2)⊕1 = 0. Then G−(G′+2+2) =

1, which contradicts G−(G+2+2) = 1. Similarly there does not exist an option

of H , H ′ with G−(H ′ + 2+ 2) ⊕ 1 = 0. Thus G−(G + H + 2 + 2) = 0.
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Therefore, Γ (G + H) = 0120.

b) Suppose that Γ (H) = nn(n⊕2). Claim that Γ (G + H) = (n ⊕ 1)(n⊕1)(n⊕3).

G+(G + H) = G+(G) ⊕ G+(H) by Lemma 2.4.1

= 1 ⊕ n,

G−(G + H) = mex{{G−(G′ + H) | G′ an option of G},

{G−(G + H ′) | H ′ an option of H}}

= mex{{G−(G′ + H) | G′ an option of G},

{G−(H ′) ⊕ 1 | H ′ an option of H}} by induction.

By induction, we have

G−(G′ + H) =

{

G−(G′) ⊕ n if Γ (G′) 6= 0120

n if Γ (G′) = 0120.

Consider when Γ (G′) 6= 0120. Suppose that G−(G′)⊕n = n⊕1. Then G−(G′) =

1. Since G′ is tame, Γ (G) = 113 or 0120. If Γ (G′) = 113, then Γ (G) 6= 1031, and

we took Γ (G′) 6= 0120

Consider now when Γ (G′) = 1031 We see that n 6= n ⊕ 1.

Suppose there exists option of H , H ′, such that G−(H ′) ⊕ 1 = n ⊕ 1. Then

G−(H ′) = n, which contradicts G−(H) = n.

Since G−(H) = n, ∀ u < n, there exists option H ′ of H such that G−(H ′) = u.

Hence, ∀ j < n ⊕ 1, there exists H ′ such that G−(H ′) ⊕ 1 = j.

Therefore G−(G + H) = n ⊕ 1.

G−(G + H + 2) = mex{G−(G + H),G−(G + H + 1)
{G−(G′ + H + 2) | G′ an option of G},

{G−(G + H ′ + 2) | H ′ an option of H}}

= mex{G−(G + H),G−(G + H) ⊕ 1,

{G−((G′ + 2) + H) | G′ an option of G},

{G−((H ′ + 2) + G) | H ′ an option of H}}

by Lemma 2.1.1
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= mex{n ⊕ 1, n,

{G−((G′ + 2) + H) | G′ an option of G},

{G−((H ′ + 2) + G) | H ′ an option of H}}

= mex{n ⊕ 1, n,

{G−((G′ + 2) + H) | G′ an option of G},

{G−(H ′ + 2) ⊕ 1 | H ′ an option of H}}

by induction.

By induction, we have

G−((G′ + 2) + H) =

{

G−(G′) ⊕ n ⊕ 2 if Γ (G′) 6= 0120

n ⊕ 2 if Γ (G′) = 0120.

Consider when Γ (G′) 6= 0120. Suppose that G−(G′) ⊕ n ⊕ 2 = n ⊕ 3. Then

G−(G′) = 1. Since G′ is tame, Γ (G) = 113 or 0120. If Γ (G′) = 113, then

Γ (G) 6= 1031, and we took Γ (G′) 6= 0120

Consider now when Γ (G′) = 1031. We see that n ⊕ 2 6= n ⊕ 3.

Recall that since Γ (G) = 1031, there is an option G′ with Γ (G′) = 0120. Thus,

one of the values in the mex set is n ⊕ 2.

Suppose there exists option of H , H ′, such that G−(H ′ + 2)⊕ 1 = n⊕ 3. Then

G−(H ′ + 2) = n ⊕ 2, which contradicts G−(H) = n ⊕ 2.

Since G−(H + 2) = n ⊕ 2, ∀ u < n, there exists option H ′ of H such that

G−(H ′+2) = u. Hence, ∀ j ≤ n⊕1, there exists H ′ such that G−(H ′+2)⊕1 = j.

Therefore G−(G + H + 2) = n ⊕ 3.

As per Corollary 2.1.6, we must also show that G−(G + H + 2 + 2) = n ⊕ 1.

The argument to show this is similar to the one given above.

Therefore Γ (G + H) = (n ⊕ 1)(n⊕1)(n⊕3).

3) Suppose we have games G and H with Γ (G) = nn(n⊕2), Γ (H) = mm(m⊕2). Claim

that Γ (G + H) = (n ⊕ m)(n⊕m)(n⊕m⊕2).

G+(G + H) = G+(G) ⊕ G+(H) by Lemma 2.4.1
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= n ⊕ m,

G−(G + H) = mex{{G−(G′ + H) | G′ an option of G},

{G−(G + H ′) | H ′ an option of H}}

= mex{{G−(G′) ⊕ m | G′ an option of G},

{n ⊕ G−(H ′) | H ′ an option of H}}

by induction

= mex{0 ⊕ m, 1 ⊕ m, · · · , (n − 1) ⊕ m,

{(n + k) ⊕ m | k ∈ X ⊂ N}, n ⊕ 0, n ⊕ 1, · · · ,

n ⊕ (m − 1), {n ⊕ (m + j) | j ∈ Y ⊂ N}},
for X, Y subsets of N such that there exists option of G and H , say G′ and H ′

respectively, such that G−(G′) = n + k and G−(H ′) = m + j.

Suppose (n+k)⊕m = n⊕m. Then, n+k = n, so k = 0, which implies that there

is an option of G, G′, with G−(G′) = n, which contradicts G−(G) = n. Similarly,

there is no j ∈ N such that n ⊕ (m + j) = n ⊕ m.

Therefore, G−(G + H) = n ⊕ m.

G−(G + H + 2) = mex{G−(G + H),G−(G + H + 1)
{G−(G′ + H + 2) | G′ an option of G},

{G−(G + H ′ + 2) | H ′ an option of H}}

= mex{G−(G + H),G−(G + H) ⊕ 1,

{G−((G′ + 2) + H) | G′ an option of G},

{G−((H ′ + 2) + G) | H ′ an option of H}}

by Lemma 2.1.1

= mex{n ⊕ m, n ⊕ m ⊕ 1,

{G−((G′ + 2) + H) | G′ an option of G},

{G−((H ′ + 2) + G) | H ′ an option of H}}

= mex{n ⊕ m, n ⊕ m ⊕ 1,

{G−((G′ + 2)) ⊕ m | G′ an option of G},
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{G−(H ′ + 2) ⊕ n | H ′ an option of H}}

by induction

= mex{0 ⊕ m ⊕ 2, 1 ⊕ m ⊕ 2, · · · , (n − 1) ⊕ m ⊕ 2,

{(n + k) ⊕ m ⊕ 2 | k ∈ X ⊂ N}, n ⊕ 2 ⊕ 0,

n ⊕ 2 ⊕ 1, · · · , n ⊕ 2 ⊕ (m − 1),

{n ⊕ (m + j) | j ∈ Y ⊂ N}}.
Suppose (n+k)⊕m⊕2 = n⊕m⊕2. Then n+k = n, so k = 0, which implies that

there is an option of G, G′, with G−(G′) = n, contradicting G−(G) = n. Similarly,

there is no j ∈ N such that n ⊕ 2 ⊕ (m + j) = n ⊕ m ⊕ 2.

Therefore G−(G + H + 2) = n ⊕ m ⊕ 2.

Thus Γ (G + H) = (n ⊕ m)(n⊕m)(n⊕m⊕2).

Therefore, the sum of tame games is tame. �

Remark. By combining Proposition 2.3.1 and Theorem 2.4.2, given any set of tame

games, we can determine the outcome class of their disjunctive sum.

2.4.2 Sum of Tame and Wild Games

Theorem 2.4.2 allows us to easily determine the genus of a sum of tame games without

explicitly determining the genera of the options of every position. As of yet, there

is no comparable theorem for determining the genus of the sum of two wild games,

or even the genus of a sum of a tame and a wild game, except in certain cases, as

demonstrated below.

Proposition 2.4.3. ([3], p.431) Suppose G is a game such that Γ (G) = gg0g1g2g3···.

Then Γ (G + 1) = (g ⊕ 1)(g0⊕1)(g1⊕1)(g2⊕1)(g3⊕1)···.

Proof. Consider G+(G + 1):
G+(G + 1) = G+(G) ⊕ G+(1) by Lemma 2.4.1

= g ⊕ 1.
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Take n ∈ Z≥0. Consider

G−

(

G + 1+
n
∑

i=1

2) = G−

([

G +
n
∑

i=1

2]+ 1)
= G−

(

G +

n
∑

i=1

2)⊕ 1 by Lemma 2.1.1

= gn ⊕ 1.

as required. �

Proposition 2.4.4. ([3], p.431) Suppose G is a game such that Γ (G) = gg0g1g2g3···.

Then Γ (G + 2) = (g ⊕ 2)g1g2g3···.

Proof. Consider G+(G + 2):
G+(G + 2) = G+(G) ⊕ G+(2) by Lemma 2.4.1

= g ⊕ 2.

The rest follows since

G−

(

G + 2+

n
∑

i=1

2) = G−

(

G +

n+1
∑

i=1

2) ,

which is precisely what we are trying to show. That is, the nth superscript in the

genus of G + 2 is the n + 1th superscript in the genus of G. �

Thus, for any game H which behaves like 1 or 2, i.e. has only one option to a

game with no moves, or two options either to a game whose only option is to a game

with no options or to a game with no options, we can easily calculate the genus of

the disjunctive sum of H and any other impartial game.

2.4.3 Monoids and Groups of Tame Games

We define the following relation on all impartial misère games :

Definition. Given two games G and H , we say that G
M
≡ H if Γ (G) = Γ (H).

Proposition 2.4.5. The relation
M
≡ is an equivalence relation.
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Proof. Let G, H , and K be games.

Reflexivity : Clearly, Γ (G) = Γ (G), so G
M
≡ G.

Symmetry : Suppose, G
M
≡ H . Then Γ (G) = Γ (H). By the symmetry of =,

Γ (H) = Γ (G), so H
M
≡ G.

Transitivity : Suppose G
M
≡ H and H

M
≡ K. Then Γ (G) = Γ (H), Γ (H) = Γ (K),

and by the transitivity of =, Γ (G) = Γ (K), so G
M
≡ K.

�

Notation. Let T denote the set of tame games. Let [T ] = T /
M
≡.

We denote the elements of [T ] by their genera. That is, the elements of [T ] are

[0120], [1031], etc.

Using Theorem 2.4.2, we obtain the following table of the sums of elements of [T ]

([4], p.137):

+ [0120] [1031] [002] [113] [220] [331] [446] [557] · · ·

[0120] [0120] [1031] [002] [113] [220] [331] [446] [557]

[1031] [1031] [0120] [113] [002] [331] [221] [557] [446]

[002] [002] [113] [002] [113] [220] [331] [446] [557]

[113] [113] [002] [113] [002] [331] [220] [557] [446]

[220] [220] [331] [220] [331] [002] [113] [664] [775]

[331] [331] [220] [331] [220] [113] [002] [775] [664]

[446] [446] [557] [446] [557] [664] [775] [002] [113]

[557] [557] [446] [557] [446] [775] [664] [113] [002]

· · ·

The chart helps us to illustrate the following:

Theorem 2.4.6. [T ] forms an Abelian monoid under + with identity [0120].

Theorem 2.4.7. The subset of [T ] consisting only of elements of the form [nn(n⊕2)]

for n ∈ {0, 1, 2, · · ·} forms an Abelian group under + with identity [002] and each

element self-inverse.

Proof. of Theorems 2.4.6 and 2.4.7 Follows from Theorem 2.4.2. �
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2.5 Future Work

We would like to be able to find some sort of algebraic structure on wild games, in

the same way that Theorem 2.4.6 shows there to be an algebraic structure on tame

games. Chapter 5 shows that by restricting ourselves to the rules of a fixed game, a

periodic structure can sometimes be achieved, but the question remains as to whether

there is one in general.



Chapter 3

Subtraction and Taking But Not Breaking Games

In this chapter we will use the genus to analyse impartial heap games where the valid

moves are to remove tokens from a heap.

3.1 Subtraction Games

The use of genus gives us the following theorem:

Theorem 3.1.1. ([3], p.442) Every Subtraction game S played under the misère play

convention is misère Nim. That is, for hn a heap of size n played under the rules of

S, hn is tame and Γ (hn) = 0120, 1031, or nn(n⊕2) for n ∈ {2, 3, 4, · · ·}, and each of the

options of hn are tame with genus equal to 0120, 1031, or nn(n⊕2) for n ∈ {2, 3, 4, · · ·}.

Proof. Let hn denote a heap of size n.

We proceed by induction on n.

Consider h0. Since there are no options, we can easily calculate that the genus of

h0 is 0120. This shows the base case.

Suppose true ∀ hn with n < k. Consider n = k.

By induction every option of hk has genus either 0120, 1031 or mm(m⊕2) for m ∈

{2, 3, 4 · · ·}. Denote the genus of hk by gg0g1g2g3···.

Suppose g = 0. That is G+(hk) = 0. By Theorem 3 of ([5]), there exists an option

of hk, say hm with m < k, such that G+(hm) = 1. By induction, Γ (hm) = 1031.

Examine g0:

g0 = mex{G−(h′
k) | h′

k is an option of hk}.

If there exists an option of hk, ht with t < n, such that G−(ht) = 1, by induction,

Γ (ht) = 0120, which contradicts g = 0. Since G−(hm) = 0, we have that g0 = 1.

Examine g1:

g1 = G−(hk + 2)
61
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= mex{G−(hk),G
−(hk) ⊕ 1, {G−(h′

k + 2) | h′
k is an option of hk}}

by Proposition 2.1.2

= mex{1, 0, {G−(h′
k + 2) | h′

k is an option of hk}}.

If there exists an option of hk, ht with t < k such that G−(ht+2) = 2, by induction,

Γ (ht) = 0120, which contradicts g = 0. Therefore g1 = 2.

Examine g2:

g2 = G−(hk + 2+ 2)
= mex{G−(hk + 2),G−(hk + 2) ⊕ 1, {G−(h′

k + 2+ 2) | h′
k is an option of hk}}

by Proposition 2.1.2

= mex{2, 3, {G−(h′
k + 2 + 2) | h′

k is an option of hk}}.

If there exists an option of hk, ht with t < k such that G−(ht + 2 + 2) = 0, by

induction, Γ (ht) = 0120, which contradicts g = 0. Therefore g2 = 0.

Thus, Γ (hk) = 0120.

The cases where g = 1 and g = i ∈ {2, 3, 4, · · ·} follow similarly giving Γ (hk) =

1031 or ii(i⊕2) respectively. Therefore every Subtraction game is misère Nim. �

Corollary 3.1.2. For any subtraction game, the genus of hn depends only on G+(hn).

Moreover, we know that the G+ sequence of a finite subtraction game becomes

periodic ([1], p.121). That is, there exists N, p ∈ N such that ∀ n ≥ N , G+(hn) =

G+(hn+p). We then obtain the following theorem:

Theorem 3.1.3. For any finite subtraction game, the genus sequence of the heaps

becomes periodic. That is, for any finite subtraction game, there exists N, p ∈ N, such

that ∀ n ≥ N , Γ (hn) = Γ (hn+p).

3.2 Taking But Not Breaking Games

In Section 1.2 we defined Taking and Breaking games, in which a legal move

involved taking tokens from a heap, splitting the heap into smaller heaps, or some

combination of the two. We define a Taking But Not Breaking game to be one

where the only legal move, if there is one available, is to take tokens from a heap.

Subtraction games are examples of Taking But Not Breaking Games.
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3.3 Subtraction Octals

Definition. A subtraction octal is an octal game 0.d1d2d3 · · · with di ∈ {0, 1, 2, 3}

∀ i ∈ N. They are called such as the octal code prohibits splitting of the heaps. A

finite subtraction octal is a subtraction octal such that there exists N ∈ N such

that ∀ n ≥ N , dn = 0.

Subtraction octals are another example of Taking But Not Breaking games.

In some sense, finite subtraction octals are just finite subtraction games with an

initial “pre-sequence”. Consider a finite subtraction octal 0.d1d2 · · · dm. There exists

an i ∈ {0, 1, · · ·m} such that ∀ j ≥ i, dj = 0 or 3. Then for all heaps of size i and

greater, we are playing the subtraction game with subtraction set {j | dj = 2 or 3}.

Example 3.3.1. Consider the finite subtraction octal game 0.23313.

• There is no valid move from a heap with one token.

• We can remove one or two tokens from a heap with two tokens.

• We can remove one, two, or three tokens from a heap with three tokens.

• We can remove one, two, three, or four tokens from a heap with four tokens.

• From a heap with five or more tokens, we can remove one, two, three, or five

tokens. That is, for all heaps of size five and greater, we are playing a subtraction

game with subtraction set {1, 2, 3, 5}.

However, even though finite subtraction octal games are a variant on subtraction

games, there is no directly comparable theorem to Theorem 3.1.1. In fact, there exist

finite subtraction octal games which are not even tame.

Example 3.3.2. Recall the game 0.3122 from Example 2.1.2. The genus of h4, h5

and h7 are not tame. In fact, it can be shown that ∀ n ∈ Z≥0, the genera of h5+7n,

h7+7n, h8+7n, and h11+7n are wild.

There are no wild finite subtraction octal games with octal length two or less.

There is one wild finite subtraction octal game with octal length three, 21 with octal

length four, 154 with octal length five, and 739 with octal length six. Appendix A

lists all wild finite subtraction octal games of octal length six or less.
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3.3.1 Periodicity

Since we remove tokens rather than split heaps of tokens, we hope to obtain a compa-

rable theorem to Theorem 3.1.3 for finite subtraction octal games; that is, we would

like for any finite subtraction octal game with a heap of size n denoted by hn, n ∈ Z≥0,

there exists N, p ∈ N, such that ∀ n ≥ N , Γ (hn) = Γ (hn+p). While there are some

finite subtraction octals which satisfy this condition, this is not true in general, al-

though there are some notions of periodicity which are true for all finite subtraction

octals.

We begin with:

Proposition 3.3.1. Given a finite subtraction octal game, there exists N , p ∈ N
such that ∀ n ≥ N , G+(hn) = G+(hn+p). Similarly, for each v ∈ Z≥0, there exists Nv,

pv ∈ N such that ∀ m ≥ Nv, G− (hm +
∑v

i=1 2) = G− (hm+pv
+
∑v

i=1 2).
Proof. The proof mimics that of Theorem 7.32 of [1].

Consider the finite subtraction octal game 0.d1d2 · · · dk and n ≥ k + 1. From hn,

there are at most k legal moves. In particular, ∀ n ≥ k + 1,

G+(hn) = mex{G+(hn−i) | di = 2 or 3}.

Thus G+(hn) ≤ k, since |{G+(hn−i) | di = 2 or 3}| ≤ k + 1. That is, G+(hn) = u

for u ∈ {0, 1, · · · , k}.

Let m = max{i | di = 2 or 3}. That is, m is the largest number of tokens which

can be taken from a heap of size n.

The future G+ sequence from hn onwards depends only on the previous m values,

G+(hn−m),G+(hn−m+1), · · · ,G+(hn−1). Not all of these values will be in the mex set

which determines G+(hn); the number m is an overestimation assuming that ∀ i < m,

di = 3.

Look at subsequences of length m of the G+ values. Eventually there will be a

subsequence which repeats itself since there are only a finite number of permutations

of length m with k + 1 elements. That is, there exists p, l ∈ Z≥0 such that

G+(hn) = G+(hn+p) ∀ n such that l ≤ n ≤ l + m.
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Claim G+(hn+p) = G+(hn) ∀ n ≥ l. Proceed by induction on n. We have the base

case from the preceding paragraph.

Fix t ∈ Z≥0 and suppose that ∀ u < t,

G+(h(n+u)+p) = G+(hn+u).

Consider

G+(hn+t+p) = mex{G+(h(n+t+p)−i) | di = 2 or 3}

= mex{G+(h(n+t−i)+p) | di = 2 or 3}

= mex{G+(hn+t−i) | di = 2 or 3} by induction

= mex{G+(h(n+t)−i) | di = 2 or 3}

= G+(hn+t).

which completes the induction.

Similarly, for each v ∈ Z≥0, the G−(hm +
∑v

i=1 2) sequences become periodic,

noting that for v ≥ 1,

G−

(

hm +

v
∑

i=1

2) = mex

{

G−

(

hm +

v−1
∑

i=1

2) ,G−

(

hm +

v−1
∑

i=1

2)⊕ 1,

{

G+

(

hn−i +

v
∑

i=1

2) ∣∣∣
∣

∣

di = 2 or 3

}}

by Proposition 2.1.2.

|G− (hm +
∑v

i=1 2) | ≤ k + 3 so G− (hm +
∑v

i=1 2) ∈ {0, 1, · · · , k + 2}, so there are at

most k+3 different possible values for G− (hm +
∑v

i=1 2), rather than k+1. However,

the rest of the proof follows similarly. �

Writing the genera of the heaps as follows:

Γ (h0) = 0 1 2 0 2 0 · · ·

Γ (h1) = a a0 a1 a2 a3 a4 · · ·

Γ (h2) = b b0 b1 b2 b3 b4 · · · ,

Γ (h3) = c c0 c1 c2 c3 c4 · · ·

Γ (h4) = d d0 d1 d2 d3 d4 · · ·

· · ·

(3.1)
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Proposition 3.3.1 says that each column on the RHS becomes periodic. If there were

a column which did not become periodic, then it would be impossible for the genera

to become periodic as well.

However, just knowing that each column becomes periodic does not mean that

the genera are periodic. If the nth column becomes periodic at the vth
n heap, for

v1 < v2 < v3 < · · ·, then the genera of the heaps does not become periodic. For

example, if the each column becomes periodic where it is indicated in bold:

Γ (h0) = 0 1 2 0 2 0 · · ·

Γ (h1) = a a0 a1 a2 a3 a4 · · ·

Γ (h2) = b b0 b1 b2 b3 b4 · · · ,

Γ (h3) = c c0 c1 c2 c3 c4 · · ·

Γ (h4) = d d0 d1 d2 d3 d4 · · ·

· · ·

with the bold pattern continuing diagonally down and to the right, then the genera

will never become periodic since the genus of each heaps stabilises at a later digit in

the superscript than the index at which the genera stabilises for all previous heaps.

One condition, which, if true, is strong enough to ensure that the genera of the

heaps becomes periodic is if there exists M ∈ N such that ∀ hn, m ≥ M ,

G−

(

hn +
m
∑

i=1

2) = G−

(

hn +
m+2
∑

i=1

2) .

That is, there is an index past which the genus of each heap has stabilised. Again, this

may not occur, as, recalling the proof of Theorem 2.1.5, the genus can stabilise one,

two, or three indices after its options stabilise, but should this occur, then the genera

of the heaps becomes periodic with period the least common multiple of the period

of each of the columns with index strictly less than M . However, calculationally, if

all one wants to show is that the genera for a specific finite subtraction octal game

becomes periodic, it is often easier to simply calculate the genera of the first n heaps

for n sufficiently large, look for a pattern, and then prove the pattern continues by

induction, rather than showing that there exists an M at which each genus stabilises

and then determining the period of the first M columns.
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There are other abnomolies. The pre-period of each of the columns need not be

the same, or even multiples of each other. Equally, the length of the period of each

column need not be the same, nor multiples of each other, as the following example

shows:

Example 3.3.3. Consider the following finite octal subtraction game S:

0. 31023 21320 32002 32103 20213 20231 32000 00312 10213

21031 21212 12121 33300 33003 13003 12031 03310 10000

00012 30000 00123 00000 00000 00000 00000 31233 1.

With the use of a computer program written by the author, we obtain

Pre-period Period

G+(S) 5 683 435

G−(S) 61 139 7 056

G−(S + 2) 97 910 14 112

G−(S + 2 + 2) 110 552 28 224

G−(S + 2 + 2+ 2) 166 438 56 448 .

There is no relationship between the pre-periods and no relationship between the

period of G+(S) and any other periods listed in the above table.

Example 3.3.3 illustrates an interesting (and as of yet, unverifiable) fact, namely

that the period lengths of the G− columns are related. In this case, the period of

G−(S + 2) is twice the period of G−(S), the period of G−(S + 2+ 2) is four times the

period of G−(S). and the period of G−(S + 2 + 2 + 2) is eight times the period of

G−(S). This leads to the following conjecture:

Conjecture 3.3.2. Let ρn be the period of the nth column, thinking of the genera of

the heaps as in (3.1), for n ∈ N. Then there exists an i ∈ N such that for each j ∈ N,

there exists mj ∈ N such that ρj = mj · ρi. That is, there exists a column i such that

the period of every other column is some multiple of the period of column i.

We now return to the question of periodicity of the genus sequence - does there

exists N, p ∈ N, such that ∀ n ≥ N , Γ (hn) = Γ (hn+p)? While there is a wealth of
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evidence to support the conjecture, such as 0.123 (whose genera have period five with

pre-period four), 0.21123 (whose genera have period forty-eight with no pre-period),

0.100213 (whose genera have period ten with pre-period seven), 0.33121 (whose genera

have period nine with pre-period three), and 0.01023 (whose genera have period nine

with pre-period seven), there is also a counterexample - 0.122 213.

Notation. Let {a1a2 · · ·an}m denote the string a1a2 · · ·an repeated m times.

Example 3.3.4.

{a1a2a3}
6 = a1a2a3 a1a2a3 a1a2a3 a1a2a3 a1a2a3 a1a2a3

Proposition 3.3.3. Let G = 0.122 213. For n ∈ Z≥0, let hn denote a heap of size

n. Then

n genus

h24+40n 2{{43131}
2{42020}2}

n
43131 431

h25+40n 2131{43131{42020}243131}
n
431

h26+40n 00{43131{42020}243131}
n
43131 420

h27+40n 03131{{42020}2{43131}2}
n
420

h28+40n 331{{42020}2{43131}2}
n
420

h29+40n 1{{42020}
2{43131}2}

n
42020 420

h30+40n 1120{42020{43131}242020}
n
42020 431

h31+40n 40{42020{43131}242020}
n
42020 431

h32+40n 22020{{43131}2{42020}2}
n
43131 431

h33+40n 220{{43131}2{42020}2}
n
43131 431

h34+40n 0{{43131}
2{42020}2}

n
{43131}2420

h35+40n 013143 131{{42020}2{43131}2}
n
420

h36+40n 304313 1{{42020}2{43131}2}
n
42020 420

h37+40n 13131{{42020}2{43131}2}
n
42020 420

h38+40n 131{{42020}2{43131}2}
n
{42020}2431

h39+40n 4{{42020}
2{43131}2}

n
{42020}2431

h40+40n 212042 020{{43131}2{42020}2}
n
43131 431

continued on next page
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Continued from previous page

n genus

h41+40n 204202 0{{43131}2{42020}2}
n
43131 431

h42+40n 02020{{43131}2{42020}2}
n
{43131}2420

h43+40n 020{{43131}{42020}}n{43131}2420

h44+40n 3{{43131}
2{42020}2}

n
{43131}242020 420

h45+40n 113143 131{{42020}2{43131}2}
n
42020 420

h46+40n 104313 1{{42020}2{43131}2}
n
{42020}2431

h47+40n 43131{{42020}2{43131}2}
n
{42020}2431

h48+40n 231{{42020}2{43131}2}
n
{42020}243131 431

h49+40n 2{{42020}
2{43131}2}

n
{42020}243131 431

h50+40n 012042 020{{43131}2{42020}2}
n
{43131}2420

h51+40n 004202 0{{43131}2{42020}2}
n
{43131}2420

h52+40n 32020{{43131}2{42020}2}
n
{43131}242020 420

h53+40n 120{{43131}2{42020}2}
n
{43131}242020 420

h54+40n 1{{43131}
2{42020}2}

n+1
431

h55+40n 4131{{43131}2{42020}2}
n
{42020}2431

h56+40n 20{43131{42020}243131}
n+1

431

h57+40n 23131{{42020}2{43131}2}
n
{42020}243131 431

h58+40n 031{{42020}2{43131}2}
n+1

420

h59+40n 0{{42020}
2{43131}2}

n+1
420

h60+40n 3120{42020{43131}242020}
n+1

420

h61+40n 10{42020{43131}242020}
n+1

420

h62+40n 12020{{43131}2{42020}2}
n+1

431

h63+40n 420{{43131}2{42020}2}
n+1

431

Proof. We proceed by induction on n.

For n = 0, calculations give us

n genus

h24 243131 431

continued on next page
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Continued from previous page

n genus

h25 213143 1

h26 004313 1420

h27 031314 20

h28 331420 20420

h29 142020 420

h30 112042 02043 1

h31 404202 0431

h32 220204 31314 31

h33 220431 31431

h34 043131 43131 420

h35 013143 13142 0

h36 304313 14202 0420

h37 131314 20204 20

h38 131420 20420 20431

h39 442020 42020 431

h40 212042 02043 13143 1

h41 204202 04313 1431

h42 020204 31314 31314 20

h43 020431 31431 31420

h44 343131 43131 42020 420

h45 113143 13142 02042 0

h46 104313 14202 04202 0431

h47 431314 20204 20204 31

h48 231420 20420 20431 31431

h49 242020 42020 43131 431

h50 012042 02043 13143 13142 0

h51 004202 04313 14313 1420

h52 320204 31314 31314 20204 20

continued on next page
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Continued from previous page

n genus

h53 120431 31431 31420 20420

h54 143131 43131 42020 42020 431

h55 413143 13142 02042 02043 1

h56 204313 14202 04202 04313 1431

h57 231314 20204 20204 31314 31

h58 031420 20420 20431 31431 31420

h59 042020 42020 43131 43131 420

h60 312042 02043 13143 13142 02042 0

h61 104202 04313 14313 14202 0420

h62 120204 31314 31314 20204 20204 31

h63 420431 31431 31420 20420 20431

which shows the base case.

Suppose true ∀ n < k. That is, for all n < k, the genus of a heap of size hi+40n,

for i ∈ {24, 25, · · · , 63}, equals the genus given in the chart in the statement of the

theorem. Call this (IH1).

Consider n = k.

We will only show the result for h24+40k, as the method of proof is similar for all

heaps.

The moves available from h24+40k are

h24+40k
−2 // h24+40k−2 = h62+40(k−1)

−3 // h24+40k−3 = h61+40(k−1)

−4 // h24+40k−4 = h60+40(k−1)

−6 // h24+40k−6 = h58+40(k−1),

where each of the options falls under the induction hypothesis. That is

Γ
(

h61+40(k−1)

)

= 12020{{43131}2{42020}2}
k
431,

Γ
(

h61+40(k−1)

)

= 10{42020{43131}242020}
k
420,
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Γ
(

h60+40(k−1)

)

= 3120{42020{43131}242020}
k
420,

Γ
(

h58+40(k−1)

)

= 031{{42020}2{43131}2}
k
420.

We want

Γ (h24+40k) = 2{{43131}
2{42020}2}

k
43131 431. (3.2)

G+(h24+40k) = mex{1, 1, 3, 0}

= 2,

G−(h24+40k) = mex{2, 0, 1, 3}

= 4.

Therefore the base and the first superscript equal the desired result.

Consider

G−

(

h24+40k +

m
∑

i=1

2)
for m ∈ N. Claim that this equals the (m + 1)th exponent of the genus on the RHS

of Equation (3.2)

Proceed by induction on m.

Suppose m = 1. Then

G−(h24+40k + 2) = mex{G−(h24+40k),G
−(h24+40k) ⊕ 1,G−(h62+40(k−1) + 2),

G−(h61+40(k−1) + 2),G−(h60+40(k−1) + 2),G−(h58+40(k−1) + 2)}
by Proposition 2.1.2

= mex{4, 5,G−(h24+40k) ⊕ 1,G−(h62+40(k−1) + 2),
G−(h61+40(k−1) + 2),G−(h60+40(k−1) + 2),G−(h58+40(k−1) + 2)}

= mex{4, 5, 0, 4, 2, 1} by (IH1)

= 3,

as required.

Now suppose true ∀ m < 10k + 6. That is

Γ (h24+40k) = 2{{43131}
2{42020}2}

n
43131 4 g10k+6 g10k+7 g10k+8··· (3.3)
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for g10k+i ∈ Z≥0, i ∈ {6, 7, · · ·}.

Examine g10k+6:

g10k+6 = G−

(

h24+40k +
10k+6
∑

i=1

2)
= mex

{

G−

(

h24+40k +

10k+5
∑

i=1

2) ,G−

(

h24+40k +

10k+5
∑

i=1

2)⊕ 1,

G−

(

h62+40(k−1) +

10k+6
∑

i=1

2) ,G−

(

h61+40(k−1) +

10k+6
∑

i=1

2) ,

G−

(

h60+40(k−1) +

10k+6
∑

i=1

2) ,G−

(

h58+40(k−1) +

10k+6
∑

i=1

2)}
by Proposition 2.1.2

= mex

{

4, 5,G−

(

h62+40(k−1) +

10k+6
∑

i=1

2) ,G−

(

h61+40(k−1) +

10k+6
∑

i=1

2) ,

G−

(

h60+40(k−1) +

10k+6
∑

i=1

2) ,G−

(

h58+40(k−1) +

10k+6
∑

i=1

2)}
by Equation (3.3)

= mex{4, 5, 1, 2, 2, 0} by (IH1)

= 3,

as required.

Examine g10k+7:

g10k+7 = G−

(

h24+40k +
10k+7
∑

i=1

2)
= mex

{

G−

(

h24+40k +
10k+6
∑

i=1

2) ,G−

(

h24+40k +
10k+6
∑

i=1

2)⊕ 1,

G−

(

h62+40(k−1) +

10k+7
∑

i=1

2) ,G−

(

h61+40(k−1) +

10k+7
∑

i=1

2) ,

G−

(

h60+40(k−1) +

10k+7
∑

i=1

2) ,G−

(

h58+40(k−1) +

10k+7
∑

i=1

2)}
by Proposition 2.1.2

= mex

{

3, 2,G−

(

h62+40(k−1) +

10k+7
∑

i=1

2) ,G−

(

h61+40(k−1) +

10k+7
∑

i=1

2) ,
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G−

(

h60+40(k−1) +

10k+7
∑

i=1

2) ,G−

(

h58+40(k−1) +

10k+7
∑

i=1

2)}
by Equation (3.3)

= mex{3, 2, 3, 0, 0, 2} by (IH1)

= 1,

as required.

Examine g10k+8:

g10k+8 = G−

(

h24+40k +

10k+8
∑

i=1

2)
= mex

{

G−

(

h24+40k +

10k+7
∑

i=1

2) ,G−

(

h24+40k +

10k+7
∑

i=1

2)⊕ 1,

G−

(

h62+40(k−1) +

10k+8
∑

i=1

2) ,G−

(

h61+40(k−1) +

10k+8
∑

i=1

2) ,

G−

(

h60+40(k−1) +

10k+8
∑

i=1

2) ,G−

(

h58+40(k−1) +

10k+8
∑

i=1

2)}
by Proposition 2.1.2

= mex

{

1, 0,G−

(

h62+40(k−1) +

10k+8
∑

i=1

2) ,G−

(

h61+40(k−1) +

10k+8
∑

i=1

2) ,

G−

(

h60+40(k−1) +

10k+8
∑

i=1

2) ,G−

(

h58+40(k−1) +

10k+8
∑

i=1

2)}
by Equation (3.3)

= mex{1, 0, 1, 2, 2, 0} by (IH1)

= 3,

as required.

By (IH1), the genus of each of the options has stabilised by this index. Since the

genus of h24+40k has exhibited stabilising behaviour, this gives

h24+40k = 2{{43131}
2{42020}2}

n
43131 431

as required.

The other thirty-nine cases follow similarly. �
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Theorem 3.3.4. Let G = 0.122 213. Then the genus sequence of the heaps of G

never becomes periodic.

Proof. Consider heaps h24+40n for n ∈ Z≥0. By Proposition 3.3.3,

Γ (h24+40n) = 2{{43131}
2{42020}2}

n
43131 431,

and for heaps of size twenty-four or greater, the only heaps whose genera have 243 as

its starting digits are heaps of the form h24+40k for some k ∈ Z≥0. Thus, if the genus

sequence of the heaps of this game were to be periodic, there exists N ∈ Z≥0, such

that for n ≥ N , there exists n1, n2, · · ·ni, · · · ∈ Z≥0 such that

Γ (h24+40n) = Γ (h24+40n1
) = Γ (h24+40n2

) = · · · = Γ (h24+40ni
) = · · · .

Claim that for n ∈ Z≥0, there does not exist m ∈ Z≥0, m 6= n, such that

Γ (h24+40n) = Γ (h24+40m).

Fix n, m ∈ Z≥0, n 6= m, and suppose, without loss of generality, that n < m. By

Proposition 3.3.3,

G−

(

h24+40m +
10m+5
∑

i=1

)

= 4,

while

G−

(

h24+40n +
10m+5
∑

i=1

)

= 1.

Therefore the genera of h24+40m and h24+40n cannot be the same if n 6= m as digits in

the superscript are not all equal.

Therefore the genus sequence of the heaps of G never become periodic. �

Again, this, unfortunately, shows how finite subtraction octals do not necessarily

behave like pure finite subtraction games, which, by Theorem 3.1.3, have a periodic

genus sequence.

3.3.2 The Domestication of Finite Subtraction Octal Games

Definition. Given a wild finite subtraction octal game G = 0.d1d2 · · · dn, we nimify

G by appending an infinite number of threes to the end of the octal, i.e. 0.d1d2 · · ·dn3̄.

We call the resulting octal N (G).
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Recall from Example 1.2.2 that the octal code for Nim is 0.3̄; by nimifying G, we

are trying to make G’s octal code look much like Nim’s as we possibly can in the

hopes that N (G) will now behave like Nim.

Definition. Given a wild finite subtraction octal game G, we say that G is domes-

ticatable if ∀ n ∈ Z≥0, for hn a heap of N (G), hn is tame.

In essence, if G is domesticatable, then nimifying worked. That is, by making

the octal code of G resemble Nim’s, G now behaves like Nim. Not all wild finite

subtraction octal games are domesticatable however - see Appendix A for a list of

non-domesticatable finite subtraction octal games of octal length six or less.

Some wild finite subtraction octal games almost take to being nimified but are

still a bit too wild.

Definition. Given a wild finite subtraction octal game G, we say that G is almost

domesticatable if there exists N ∈ N such that there exists at least one m ∈ N,

m < N , hm a heap of N (G) such that hm is wild and ∀ n ≥ N , for hn a heap of

N (G), Γ (hn) = 0120, 1031, or nn(n⊕2) for n ∈ Z≥0. That is, G is almost domesticatable

if N (G) has only a finite number of heaps whose genera equal wild values.

We need to be careful to note that for an almost domesticatable finite subtraction

octal game, the large heaps are not tame, rather they have their genus equal to a tame

value, as for a game to be tame, its options must also be tame, and for large heaps

in the nimified game, amongst a heap’s options will be the wild heaps. Frequently,

supposing 0.d1d2 · · · dn is a almost domesticatable finite subtraction octal, wild heaps

occur at heap size m for m ≤ n where the nimification of the game has no effect.

Appendix A makes note of wild finite subtraction octals of length six or less which

are almost domesticatable.

Definition. Given a finite octal game G, the Nimming Number is the least number

of threes which must be appended to the octal code such that the resulting game is

tame.
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A tame finite subtraction octal has Nimming Number 0, since we need not append

any threes to obtain a tame game. A wild finite subtraction octal game in which

appending any number of threes (including an infinite number) does not make the

resulting game tame is said to have an undefined Nimming Number. A wild finite

subtraction octal game in which the game only becomes tame if an infinite number

of threes are appended is said to have Nimming Number ∞. In all finite subtraction

octal games examined, the Nimming Number is either undefined or ∞, which leads

to the following conjecture:

Conjecture 3.3.5. Let G be a finite subtraction octal game. Then the Nimming

Number of G is either undefined or ∞.

We conclude with three proofs, one proving that 0.123 is domesticatable, one prov-

ing 0.123 has Nimming Number ∞, and one proving that 0.3103 is not domesticatable.

These proofs are representative of how one shows that a specific wild finite subtrac-

tion octal game is domesticatable or not domesticatable, as well as the calculation of

the Nimming Number.

Proposition 3.3.6. 0.123 is domesticatable.

Proof. Let hn denote a heap of size n in the game N (0.123).

Claim

Γ (hn) =















0120 if n = 0, 2

1031 if n = 1
⌈

n
2

⌉⌈n
2 ⌉(⌈

n
2 ⌉⊕2)

else.

We proceed by induction on n.

The genera of h0, h1, h2, and h3 follows from their genera in the game 0.123. They

are

heap genus

h0 0120

h1 1031

h2 0120

h3 220
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Consider h4. There are three moves from h4:

h4
−4 // h0

h4
−3 // h1

h4
−2 // h2.

By Proposition 2.1.2, Γ (h4) = 220.

Suppose true ∀ n < 2k. Consider n = 2k. There are 2k − 1 moves from h2k:

h2k
−2k // h0

h2k
−2k+1 // h1

h2k
−2k+2 // h2

· · ·

h2k
4 // h2k−4

h2k
3 // h2k−3

h2k
2 // h2k−2.

By induction, their respective genera are:

heap genus

h0 0120

h1 1031

h2 0120

h3 220

· · ·

h2k−4 (k − 2)(k−2)((k−2)⊕2)

h2k−3 (k − 1)(k−1)((k−1)⊕2)

h2k−2 (k − 1)(k−1)((k−1)⊕2)

By Proposition 2.1.2, Γ (h2k) = kk(k⊕2), which is tame. Since
⌈

2k
2

⌉

= k, we have

shown the result for even numbers.

Similarly, Γ (h2k+1) = (k + 1)(k+1)((k+1)⊕2). Since
⌈

2k+1
2

⌉

= k + 1, this shows the

result for odd numbers.

Therefore 0.123 is domesticatable. �
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Proposition 3.3.7. The Nimming Number of 0.123 is ∞. That is 0.123(3)n is wild

for any n ∈ Z≥0.

Proof. Fix n ∈ N. Examine the game 0.123(3)n. Let hn denote a heap of size n in

the game 0.123(3)n. By Proposition 3.3.6, we know that all heaps up to size n + 3

are tame.

Consider hn+4. The moves available from hn+4 are:

hn+4
−(n+3)

// h1

hn+4
−(n+2)

// h2

hn+4
−(n+1)

// h3

· · ·

hn+4
−4 // hn

hn+4
−3 // hn+1

hn+4
−2 // hn+2.

By Proposition 3.3.6, their respective genera are:

heap genus

h0 0120

h1 1031

h2 0120

h3 220

· · ·

hn

⌈

n
2

⌉⌈n
2 ⌉(⌈

n
2 ⌉⊕2)

hn+1

⌈

n+1
2

⌉⌈n+1

2 ⌉(⌈n+1

2 ⌉⊕2)

hn+2

⌈

n+2
2

⌉⌈n+2

2 ⌉(⌈n+2

2 ⌉⊕2)

By Proposition 2.1.2, Γ (hn+4) =
⌈

n+4
2

⌉⌈n+4

2 ⌉(⌈n+4

2 ⌉⊕2)
.

Claim the genus of hn+5 is 1031. The moves available from hn+5 are

hn+5
−(n+3)

// h2

hn+5
−(n+2)

// h3

hn+5
−(n+1)

// h4
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· · ·

hn+5
−4 // hn+1

hn+5
−3 // hn+2

hn+5
−2 // hn+3.

The only heap with genus equalling 1031 with size less than n + 3 is h1, which is not

an option of hn+5. Moreover, Γ (h2) = 0120. By Proposition 2.1.2, Γ (hn+5) = 1031.

Claim Γ (hn+6) = 002. The moves available from hn+6 are

hn+6
−(n+3)

// h3

hn+6
−(n+2)

// h4

hn+6
−(n+1)

// h5

· · ·

hn+6
−4 // hn+2

hn+6
−3 // hn+3

hn+6
−2 // hn+4.

By preceding work, their respective genera are:

heap genus

h3 220

h4 220

h5 331

· · ·

hn+2

⌈

n+2
2

⌉⌈n+2

2 ⌉(⌈n+2

2 ⌉⊕2)

hn+3

⌈

n+3
2

⌉⌈n+3

2 ⌉(⌈n+3

2 ⌉⊕2)

hn+4

⌈

n+4
2

⌉⌈n+4

2 ⌉(⌈n+4

2 ⌉⊕2)

By Proposition 2.1.2, Γ (hn+6) = 002.

Claim hn+8 is wild. The moves available from hn+8 are:

hn+8
−(n+3)

// h5

hn+8
−(n+2)

// h6
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hn+8
−(n+1)

// h7

· · ·

hn+8
−4 // hn+4

hn+8
−3 // hn+5

hn+8
−2 // hn+6.

By preceding work, their respective genera are:

heap genus

h5 331

h6 331

h7 446

· · ·

hn+4

⌈

n+4
2

⌉⌈n+4

2 ⌉(⌈n+4

2 ⌉⊕2)

hn+5 1031

hn+6 002

Since all options of the position are tame, and there is an option with genus 002

and an option with 1031, and no options with genera 0120 or 113, by Theorem 2.2.2,

hn+8 is wild. By Proposition 2.1.2, Γ (hn+8) = 21420. �

Proposition 3.3.8. The finite subtraction octal game 0.3103 is not domesticatable.

Proof. Let hn denote a heap of size n in the game N (0.3103)

The genera of heaps of size zero through three are:

heap genus

h0 0120

h1 1031

h2 220

h3 002

Claim for n ∈ N,

Γ (h4n) = (2n − 1)(2n)(2n⊕2),

Γ (h4n+1) = 2n(2n+1)((2n+1)⊕2),
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Γ (h4n+2) = (2n + 1)(2n+2)((2n+2)⊕2),

Γ (h4n+3) = (2n + 2)(2n+1)((2n+1)⊕2).

Proceed by induction on n.

Calculations give that the genera of heaps of size four through seven are:

heap genus

h4 120

h5 231

h6 346

h7 431

which shows the base case.

Suppose now true ∀ n < k. Consider n = k. We will show that Γ (h4k) =

(2k − 1)(2k)(2k⊕2), since the proofs for 4k + 1, 4k + 2, and 4k + 3 are similar and

relatively straightforward.

The moves available from h4k are:

h4k

−(4k)
// h0

h4k

−(4k−1)
// h1

h4k

−(4k−2)
// h2

h4k

−(4k−3)
// h3

· · ·

h4k
−8 // h4k−8

h4k
−7 // h4k−7

h4k
−6 // h4k−6

h4k
−5 // h4k−5

h4k
−4 // h4k−4

h4k
−1 // h4k−1.

We now begin the calculations:

G+(h4k) = mex{G+(h0),G
+(h1),G

+(h2),G
+(h3), · · · ,
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G+(h4k−8),G
+(h4k−7),G

+(h4k−6),

G+(h4k−5),G
+(h4k−4),G

+(h4k−1)}

= mex{0, 1, 2, 0, · · · , 2(k − 2) − 1, 2(k − 2), 2(k − 2) + 1,

2(k − 2) + 2, 2(k − 1) − 1, 2(k − 1) + 2} by induction

= mex{0, 1, 2, 0, · · · , 2k − 5, 2k − 4, 2k − 3, 2k − 2, 2k − 3, 2k}

= 2k − 1,

G−(h4k) = mex{G−(h0),G
−(h1),G

−(h2),G
−(h3), · · · ,

G−(h4k−8),G
−(h4k−7),G

−(h4k−6),

G−(h4k−5),G
−(h4k−4),G

−(h4k−1)}

= mex{1, 0, 2, 0, · · · , 2(k − 2), 2(k − 2) + 1, 2(k − 2) + 2,

2(k − 2) + 1, 2(k − 1), 2(k − 1) + 1} by induction

= mex{1, 0, 2, 0, · · · , 2k − 4, 2k − 3, 2k − 2, 2k − 3, 2k − 2, 2k − 1}

= 2k,

G−(h4k + 2) = mex{G−(h4k),G
−(h4k) ⊕ 1,G−(h0 + 2),G−(h1 + 2),G−(h2 + 2),

G−(h3 + 2), · · · ,G−(h4k−8 + 2),G−(h4k−7 + 2),G−(h4k−6 + 2),
G−(h4k−5 + 2),G−(h4k−4 + 2),G−(h4k−1 + 2)}
by Proposition 2.1.2

= mex{2k, 2k ⊕ 1, 2, 3, 0, 2, · · · , 2(k − 2) ⊕ 2, (2(k − 2) + 1) ⊕ 2,

(2(k − 2) + 2) ⊕ 2, (2(k − 2) + 1) ⊕ 2, (2(k − 1)) ⊕ 2,

(2(k − 1) + 1) ⊕ 2} by induction

= mex{2k, 2k ⊕ 1, 2, 3, 0, 2, · · · , (2k − 4) ⊕ 2, (2k − 3) ⊕ 2,

(2k − 2) ⊕ 2, (2k − 3) ⊕ 2, (2k − 2) ⊕ 2, (2k − 1) ⊕ 2}

= 2k ⊕ 2,

G−(h4k + 2 + 2) = mex{G−(h4n + 2),G−(h4n + 2) ⊕ 1,G−(h0 + 2 + 2),
G−(h1 + 2+ 2),G−(h2 + 2+ 2),G−(h3 + 2+ 2), · · · ,
G−(h4k−8 + 2 + 2),G−(h4k−7 + 2+ 2),G−(h4k−6 + 2+ 2),
G−(h4k−5 + 2 + 2),G−(h4k−4 + 2+ 2),G−(h4k−1 + 2+ 2)}
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by Proposition 2.1.2

= mex{2k ⊕ 2, 2k ⊕ 3, 0, 1, 2, 0, · · · , 2(k − 2), 2(k − 2) + 1,

by induction

2(k − 2) + 2, 2(k − 2) + 1, 2(k − 1), 2(k − 1) + 1}

= mex{2k ⊕ 2, 2k ⊕ 3, 0, 1, 2, 0, 2k − 4, 2k − 3, 2k − 2, 2k − 3,

2k − 2, 2k − 1}

= 2k.

Therefore, by induction Γ (h4k) = (2k − 1)(2k)(2k⊕2).

Since every heap of size four or greater of N (0.3103) is wild, 0.3103 is not domes-

ticatable. �

Proposition 3.3.8 shows something which is very common with non-domesticatable

games - namely that nimifying certain games, rather than helping, actually makes

things worse. In the game 0.3103, heaps of size 5n + 2 for n ∈ N have wild genus, all

others have genus equal to a tame value. However, as the proof of Proposition 3.3.8

shows, after nimifying, N (0.3103) every heap of size greater than four is wild.

3.4 Future Work

Finite subtraction octal games are an excellent starting point for further investigation

in misère game theory. They have enough structure that they are not all tame, like

subtraction games, but are not too difficult to analyse. The fact that the rules are

completely encoded in a string of digits means that it is easy to write computer

programs to quickly determine the genera of heaps.

We conclude this chapter with the three open questions presented in this chapter

regarding finite subtraction octal games, namely:

1) Are the periods of each of the “columns” of the genera of the heaps of a finite

subtraction octal game related? Can we prove Conjecture 3.3.2?

2) Can we further develop the Nimming Number and possibly prove or disprove

Conjecture 3.3.5?
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3) Why are some finite subtraction octal games domesticatable, some almost domes-

ticatable, and some not domesticatable?



Chapter 4

Toppling Towers

In this chapter we use the genus to analyse a non-heap based game.

4.1 The Basics

4.1.1 Rules

Definition. The impartial combinatorial game Toppling Towers is played as fol-

lows: a n × m board is given, along with the placement of k ≤ n × m towers on

the board. On her turn, a player can “topple” a tower in one of the four cardinal

directions. Upon falling, the tower then also topples all contiguous towers in the

direction in which it was toppled. Towers which have been toppled are then removed

from the board. Under the normal play convention, a player loses if she has no towers

to topple. Under the misère play convention, a player wins if she has no towers to

topple.

Notation. We denote a game of Toppling Towers by a grid where an × represents a

tower and a blank space represents a space in which there is no tower. For example,

a toppling towers game played on a 2× 3 board with towers at positions (1, 1), (1, 2),

and (2, 3) is represented by

.

We will play under the convention that a tower can topple off the board.

Example 4.1.1. Returning to the example given above, the available moves are to

the following positions:

//

{

, , ,

}

.

86
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Proposition 4.1.1. Let G be a Toppling Towers game with no towers (i.e. the empty

board) and let H be a Toppling Towers game with exactly one tower placed somewhere

on the board. Then Γ (G) = 0120 and Γ (H) = 1031.

Proof. Since there are no moves from G, by definition of genus, Γ (G) = 0120. There

is only one move from H , H // G, and by Proposition 2.1.2, Γ (H) = 1031. �

4.1.2 Disjunctive Gameplay

Since a tower can only effect contiguous towers, we see that a Toppling Towers game

can be thought of as the disjunctive sum of each of the contiguous components,

ignoring any empty squares. Played under the normal play convention, to determine

the game value, all one needs to do is determine the game value of each of the

components and then take their Nim sum, as per Proposition 1.3.7. Under the misère

play convention, if all of the components are tame, we can compute the genus of the

game by computing each of the components’ genus, and summing them under the

rules given in Theorem 2.4.2.

Example 4.1.2. Returning again to

,

we can think of this game as the disjunctive sum of the following two games:

, .

4.2 Analysis of 1 × m Boards

We begin our analysis with the easiest case.

Notation. For n ∈ Z≥0, we will take
( )n

to mean a row of n towers.

Proposition 4.2.1. Let G =
( )n

for n ∈ N. Then

Γ (G) =

{

1031 if n = 1

nn(n⊕2) if n > 1.
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Proof. Proceed by induction on n. If n = 1, then this follows from Proposition 4.1.1.

Suppose n = 2. That is, we have the game

.

The available moves are to

//
{

,
}

.

By Propositions 2.1.2 and 4.1.1, the genus of this game is 220.

Suppose the induction hypothesis holds ∀ n < k. Consider the game

( )k
.

By toppling towers to the left from the jth left most tower, we obtain games with

genera ii(i⊕2) for i ∈ N, 2 ≤ i < k, as well as games with genera 0120 and 1031 by

toppling over all towers and all but one tower respectively.

Consider now toppling a middle tower to the north or south, leaving the game

( )a ( )b
,

for a + 1 + b = k. Since a, b < k, by induction, we know their genera, and thinking

of this position as the disjunctive sum of
( )a

and
( )b

, by Theorem 2.4.2, the

genus of this position is (a ⊕ b)(a⊕b)(a⊕b⊕2). By Proposition 1.3.6, a ⊕ b ≤ a + b < k.

Thus, there does not exist a position of this game with genus kk(k⊕2).

By Proposition 2.1.2, Γ (G) = kk(k⊕2), as required. �

Corollary 4.2.2. Let

G =
( )i1 +

( )i2 + · · ·+
( )in

+
m
∑

k=1

,

where ij ≥ 2 for j ∈ {1, 2, · · · , n}. Let

υ =

{

0 if m ≡ 0 mod (2)

1 if m ≡ 1 mod (2).

Then

G ∈ P under the misère play convention ⇐⇒ i1 ⊕ i2 ⊕ · · · ⊕ in ⊕ υ = 0.
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Proof. Recall from Proposition 2.3.1. G ∈ P under the misère play convention ⇐⇒

the first superscript in the genus symbol of G equals 0. Since each of the summands

in the game disjunctive sum is tame, by Theorem 2.4.2,

Γ (G) = i1 ⊕ i2 ⊕ · · · ⊕ in ⊕ υ(i1⊕i2⊕···⊕in⊕υ)(i1⊕i2⊕···⊕in⊕υ⊕2),

which gives the result. �

4.3 Analysis of 2 × m Boards

For a complete list of the genera of all game positions with eight or fewer towers on

2 × m boards, refer to Appendix B.

Notation. For n ∈ Z≥0, we take

( )n

to mean two rows of n towers stacked on

top of each other. Similarly, for

( )n

,

( )n

, and

( )n

.

Example 4.3.1.

( )3( )2( )3

= .

4.3.1 Wildness in Toppling Towers

Unlike in the 1 × m case, where all positions are tame, we are now able to discover

wild Toppling Towers positions, the simplest occurring with five towers.

Proposition 4.3.1. The Toppling Towers position

is wild.

Proof. The available moves, up to symmetry, are

//

{

, , , , ,

}

.

Claim that is tame.
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The available moves, up to symmetry, from are

//

{

, ,

}

.

which have genera 220 (Proposition 4.2.1) , 1031 (Proposition 4.1.1), and 0120 (Propo-

sition 4.1.1 and Theorem 2.4.2) respectively. By Proposition 2.1.2, is tame with

genus 331.

Similarly, is tame.

Then all options of are tame and calculations give that their genera are

220, 331, 0120, 446, 002, 331 respectively. By Theorem 2.2.2, the game is wild since it

has both 0120 and 002 as options, and no 1031 or 113 as options. Equally, calculating

directly gives that the genus of is 1531, which is wild. �

This is hardly an isolated case. There are two other positions with five towers

which are wild,

, and ,

as well as numerous positions with more than five towers which are wild - see Appendix

B for some examples.

4.3.2 Some Tame Positions

Clearly, from Proposition 4.2.1, all 2×m positions of the form

( )n

are tame. We

are also able to show that following positions are tame:

Theorem 4.3.2. Let

G =

( )a ( )b

,

for a, b ∈ Z≥0. Then G is tame.

Proof. Let n = a + b + 1. Proceed by induction on n.

When n = 1, G = . By Proposition 4.2.1, Γ (G) = 220, which is tame. This

shows the base case.

Suppose true ∀ n < k. Consider n = k. That is, a + b + 1 = k. The available

moves, up to “symmetry”, are to positions of the following form:
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( )a ( )b

Tame by Proposition 4.2.1,
( )a ( )b

Tame by Proposition 4.2.1 and Theorem 2.4.2,
( )a ( )b

Tame by Propositions 4.1.1 and 4.2.1,

and Theorem 2.4.2,
( )a ( )b

Tame by Proposition 4.1.1,
( )m( )a−m ( )b

Tame by induction,
( )m( )a−m ( )b

Tame by Propositions 4.1.1 and 4.2.1,

and Theorem 2.4.2,
( )a ( )a−m−1 ( )b

Tame by induction, Proposition 4.2.1,

and Theorem 2.4.2.

Note that

Γ

(

( )a ( )b
)

= 1031 by Proposition 4.1.1,

Γ

(

( )a−1 ( )b
)

= 0120 by Theorem 2.4.2,

both of which are options of G. By Theorem 2.2.2, G is tame. �

In fact, for specific configurations of the above form, we can say more than their

genera being tame, we have a formula to determine their genera:

Proposition 4.3.3. Let

G =

( )n

,

for n ∈ Z≥0. Then Γ (G) = (n + 2)(n+2)((n+2)⊕2).

Proof. Proceed by induction on n.

Suppose n = 0. Then we have the game

.



92

By Proposition 4.2.1,

Γ

( )

= 220 = (0 + 2)(0+2)((0+2)⊕2).

which shows the base case.

Suppose true for n < k. That is

Γ

(( )n )

= (n + 2)(n+2)((n+2)⊕2).

Consider
( )k

.

By Theorem 4.3.2, there exists moves to positions with genera 0120 and 1031,

namely toppling (1,2) right and (1,1) right respectively.

Now for 1 ≤ j ≤ k, let G′ be the game obtained by toppling (1, j) to the left.

( )k

//

( )j ( )k−j

.

By induction, Γ (G′) = (k − j + 2)(k−j+2)((k−j+2)⊕2). As j ranges from 1 to k, we get

options with genera of the form mm(m⊕2) for all m such that 2 ≤ m ≤ k + 1.

Thus, we have options of G with genera 0120, 1031, and mm(m⊕2) for 2 ≤ m ≤

k + 1. If we can show that there are no other moves to options H with Γ (H) =

(k + 2)(k+2)(k+2)⊕2, then by Proposition 2.1.2, Γ (G) = (k + 2)(k+2)(k+2)⊕2.

Consider toppling one of the towers in the top row either up or down:

( )k

//

( )a ( )k−a−1

,

for a ∈ N, 1 ≤ a ≤ k − 1. That is, we have the position

( )a
+

( )k−a−1

.

By Proposition 4.2.1,

Γ
(( )a)

=

{

1031 if a = 1

aa(a⊕2) else.
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By induction

Γ

(

( )k−a−1
)

= (k − a + 1)(k−a+1)((k−a+1)⊕2).

By Theorem 2.4.2,

Γ

(

( )a
+

( )k−a−1
)

= (a ⊕ (k − a + 1))(a⊕(k−a+1))((a⊕(k−a+1))⊕2) .

By Proposition 1.3.6

a ⊕ (k − a + 1) ≤ a + k − a + 1 = k + 1 < k + 2.

Consider now toppling one of the towers in the top row to the right.

( )k

//

( )k−b( )b

,

for b ∈ Z≥0, 0 ≤ b ≤ k. That is, we have the game

( )k−b
+ .

By Proposition 4.2.1,

Γ
(

( )k−b
)

=

{

1031 if b = k

(k − b)(k−b)((k−b)⊕2) else,

and

Γ
( )

= 1031.

By Theorem 2.4.2

( )k−b
+ =















1031 if b = k

0120 if b = k − 1

((k − b) ⊕ 1)((k−b)⊕1)((k−b)⊕3) else.

By Proposition 1.3.6

k − b ⊕ 1 ≤ k − b + 1 < k + 2.

Since no other options of G have genus equal to (k + 2)(k+2)(k+2)⊕2, Γ (G) =

(k + 2)(k+2)(k+2)⊕2. �
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Proposition 4.3.4. Let

G =

( )n

,

for n ∈ Z≥0. Then Γ (G) = ((n + 3) ⊕ 1)((n+3)⊕1)((n+3)⊕3).

Proof. The method of this proof is similar to that of Proposition 4.3.3. �

We conclude this section with another set of tame games:

Theorem 4.3.5. Let

G =

( )n

,

for n ∈ Z≥0. Then G is tame ⇐⇒ n ≡ 0 (mod 4).

Proof. Proceed by induction on n.

Calculations give

Γ

( )

= 002,

Γ

( )

= 1531,

Γ

( )

= 6046,

Γ

( )

= 1731,

which shows the base case.

Suppose true ∀ n < m. Consider n = m. The available moves up to symmetry

are
( )n

//

( )m

= A,

( )m

= B,

( )m

= C,

( )m

= D,

( )a ( )m−a−1

= E for 0 ≤ a ≤ m − 1,

( )a ( )m−a−1

= F for 0 ≤ a ≤ m − 1.



95

By Proposition 4.1.1, Theorem 4.3.2, and Theorem 2.4.2, all the above positions

are tame. Moreover, Γ (B) = 0120. By Theorem 2.2.2, if there is amongst the options

of G an option with genus equal to one but not both of 002 or 113, and no option

equal to 1031, then G is wild. Otherwise, it is tame.

Consider the genera of the options of G:

Γ (A) = ((m + 2) ⊕ 1)((m+2)⊕1))((m+2)⊕3) by Proposition 4.1.1, Proposition 4.3.3,

and Theorem 2.4.2,

Γ (B) = 0120,

Γ (C) = (m + 2)(m+2)((m+2)⊕2) by Proposition 4.3.3,

Γ (D) = (m + 3)(m+3)((m+3)⊕2) by Proposition 4.3.3,

Γ (E) = ((a + 2) ⊕ (m − a + 1))((a+2)⊕(m−a+1))(((a+2)⊕(m−a+1))⊕2)

by Proposition 4.3.3 and Theorem 2.4.2,

Γ (F ) = ((a + 2) ⊕ 1)((a+2)⊕1)((a+2)⊕3) by Proposition 4.1.1, Proposition 4.3.3,

and Theorem 2.4.2.

None of the genera for A, C, D, E, or F can equal 1031, since the base and the first

superscript in the genus are always equal. Since m ≥ 0, m + 2, m + 3 ≥ 2, so the

genera of A, C, and D are not equal to 002 or 113. Since a ≥ 0, (a + 2) ⊕ 1 ≥ 2, so

Γ (F ) 6= 002 or 113. Thus, it remains to examine Γ (E).

Take m = 4k for k ∈ N. Suppose Γ (E) = 002. Then

Γ (E) = 002 =⇒ (a + 2) ⊕ (m − a + 1) = 0

=⇒ a + 2 = m − a + 1

=⇒ a = m − a − 1

=⇒ E =

( )a ( )a

=⇒ 2a + 1 = 4k

=⇒ k 6∈ Z≥0,

which is a contradiction. Therefore, for m = 4k, Γ (E) 6= 002.

Suppose Γ (E) = 113. Then

Γ (E) = 113 =⇒ (a + 2) ⊕ (m − a + 1) = 1
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=⇒ |(a + 2) − (m − a + 1)| = 1

=⇒ either a + 3 = m − a + 1 or a + 2 = m − a + 2.

Suppose a + 3 = m − a + 1.

a + 3 = m − a + 1 =⇒ a + 1 = m − a − 1

=⇒ E =

( )a ( )a+1

=⇒ 2a + 2 = 4k

=⇒ k 6∈ Z≥0,

which is a contradiction.

Suppose a + 2 = m − a + 2.

a + 2 = m − a + 2 =⇒ 2a = m

=⇒ 2a = 4k

=⇒ a = 2k

=⇒ a + 2 = 2k + 2 and m − a + 1 = 2k + 1

=⇒ (a + 2) ⊕ (m − a + 1) = 3,

which is a contradiction, as we supposed that (a + 2) ⊕ (m − a + 1) = 1.

Therefore, for m = 4k, Γ (E) 6= 113. By Theorem 2.2.2, for m = 4k, G is tame.

Take m = 4k + 1. Consider the move

G //

( )2k ( )2k

= E ′.

By Theorem 2.4.2, Γ (E ′) = 002. By Theorem 2.2.2, for m = 4k + 1, G is wild.

Take m = 4k + 2. Consider the move

G //

( )2k ( )2k+1

= E ′′.

By Theorem 2.4.2, Γ (E ′′) = 113. By Theorem 2.2.2, for m = 4k + 2, G is wild.

Take m = 4k + 3. Consider the move

G //

( )2k+1 ( )2k+1

= E ′′′.

By Theorem 2.4.2, Γ (E ′′′) = 002. By Theorem 2.2.2, for m = 4k + 3, G is wild.

This completes the induction. �
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Corollary 4.3.6. Let

G =

( )n ( )4m

,

for n, m ∈ Z≥0. Then G is tame.

Corollary 4.3.7. Let

G =

( )n ( )4m ( )t

,

for n, m, t ∈ Z≥0. Then G is tame.

The following is the most important corollary of Theorem 4.3.5:

Corollary 4.3.8. Let

G =

( )i0
( )4i1

( )4i2

· · ·

( )4in−1
( )in

,

for i0, i1, · · · , in ∈ Z≥0 and such that if ij = 0, then ij+1 6= 0 for j ∈ {1, 2, · · · , n− 2}.

Then G is tame.

Proof. Let u denote the number of towers in the bottom row. Proceed by induction

on u.

If u = 1, then by Theorem 4.3.2, G is tame.

Suppose now true for u < k. Consider u = k.

G =

( )i0
( )4i1

( )4i2

· · ·

( )4ik−1
( )ik

,

such that if ij = 0, then ij+1 6= 0 for j ∈ {1, 2, · · · , k − 2}.

The available moves are to positions of the following forms:

( )i0
( )4i1

· · ·

( )4ik−1
( )ik

,

( )a ( )i0−a−1 ( )4i1

· · ·

( )4ik−1
( )ik

,

( )a ( )i0−a−1 ( )4i1

· · ·

( )4ik−1
( )ik

,

( )a ( )i0−a−1 ( )4i1

· · ·

( )4ik−1
( )ik

,
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( )i0
( )4i1

· · ·

( )4ik−1
( )ik

,

( )i0
( )4i1

· · ·

( )4ik−1
( )ik

,

( )i0
( )4i1

· · ·

( )4ik−1
( )ik

,

( )i0
( )4i1

· · ·

( )4ik−1
( )ik

,

( )i0
( )4i1

· · ·

( )4ij
( )4ij+1

· · ·

( )4ik−1
( )ik

,

( )i0
( )4i1

· · ·

( )4ij
( )4ij+1

· · ·

( )4ik−1
( )ik

,

( )i0
( )4i1

· · ·

( )4ij
( )4ij+1

· · ·

( )4ik−1
( )ik

,

( )i0
( )4i1

· · ·

( )b ( )4im−b−1

· · ·

( )4ik−1
( )ik

,

( )i0
( )4i1

· · ·

( )b ( )4im−b−1

· · ·

( )4ik−1
( )ik

,

for

0 ≤ a ≤ i0 − 1,

1 ≤ j ≤ k − 1,

1 ≤ m ≤ k − 1,

0 ≤ b ≤ 4im − 1.

By induction, Proposition 4.2.1, and Theorem 2.4.2, all of the positions are tame.

If k ≡ 0 (mod 2), by Proposition 4.1.1 and Theorem 2.4.2,

Γ

(

( )i0
( )4i1

· · ·

( )4ik−1
( )ik

)

= 0120,

Γ

(

( )i0−1 ( )4i1

· · ·

( )4ik−1
( )ik

)

= 1031.

If k ≡ 1 (mod 2), by Proposition 4.1.1 and Theorem 2.4.2,

Γ

(

( )i0
( )4i1

· · ·

( )4ik−1
( )ik

)

= 1031,
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Γ

(

( )i0−1 ( )4i1

· · ·

( )4ik−1
( )ik

)

= 0120.

By Theorem 2.2.2, G is tame. �

4.3.3 All the Tame and Wild Positions for 2 × m Boards

Proposition 4.3.1 showed us that there exist wild positions in 2×m boards. Theorem

4.3.2 and Corollary 4.3.8 gave us a set of tame positions. In fact, these are the only

contiguous tame positions of Toppling Towers in 2 × m boards with towers in both

rows; all other contiguous positions are wild.

Theorem 4.3.9. The only contiguous tame positions in 2×m boards with towers in

both rows are those of the form given in Theorem 4.3.2 and Corollary 4.3.8.

Proof. Suppose we have a position not given in Theorem 4.3.2 and Corollary 4.3.8.

There must be at least two towers in the bottom row to not be a position given in

Theorem 4.3.2. To not be a position in Corollary 4.3.8, one of the following two

conditions must be satisfied:

1)

( )i0
( )4i1

· · ·

( )ij

· · ·

( )4in−1
( )in

,

such that 1 ≤ j ≤ n − 1, ij 6≡ 0 (mod 4).

2)

( )i0
( )4i1

· · ·

( )4ik
( )m( )4ik+1

· · ·

( )4in−1
( )in

,

such that 1 ≤ k ≤ n − 1, m ≥ 3.

Suppose we are in Case 1). Then one of the followers of the position is

( )ij

,

which is wild by Theorem 4.3.5. Therefore the position given in Case 1) is wild.

Suppose we are in Case 2). Then one of the followers of the position is

,
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which has genus 21520. Therefore the position given in Case 2) is wild.

Therefore the only contiguous tame positions in 2 × m boards are those given in

Theorem 4.3.2 and Corollary 4.3.8. �

4.4 Future Work

Toppling Towers provides an excellent starting point for impartial misère games which

are not taking and breaking games. As with taking and breaking games, there is

enough structure that these games are not misère Nim in disguise.

The following areas need to be examined:

1) Writing a program to determine the genera of positions in Toppling Towers.

2) Continue the work of Propositions 4.3.3 and 4.3.4 to find formulae for the genera

of all the contiguous tame positions on 2 × m boards.

3) Analyse larger board positions.



Chapter 5

Indistinguishablility

One of the main problems with using genus as a tool to classify impartial misère

games is the inability to easily determine the genus of the disjunctive sum of two

wild games or even, in most cases, the disjunctive sum of a wild game with a tame

one. Recently Thane Plambeck has developed a tool that can be used to determine

the outcome class of disjunctive sums of wild and tame positions within the same

game, which he calls the indistinguishablility quotient. Further to this, Aaron

Siegel has developed the software package misère solver which allows us to easily

apply Plambeck’s method to misère finite octal games. The role of this chapter is to

provide a brief overview of the indistinguishablility quotient; formal proofs are left to

[8]. In Section 5.4.4, we provide an example of Plambeck’s method analysing 0.3103.

5.1 The Alphabet

For each n ∈ N, define a formal symbol hn. Let H = {h1, h2, h3, · · · , }. We call

H the heap alphabet. Define Hn = {h1, h2, · · · , hn}. Let FH denote the free

Abelian monoid on the heap alphabet H, where we denote the binary operation

multiplicatively by · and the identity is the empty string, denoted by 1.

Suppose we are given a taking and breaking game G with heaps denoted by

ĥ0, ĥ1, ĥ2, · · ·. Then there is a clear correspondence between elements of FH and the

positions in G. For example, suppose in G we have the position a heap of size two,

a heap of size three, and two heaps of size six; that is, ĥ2 + ĥ3 + ĥ6 + ĥ6. We can

easily see that this corresponds to the element h2 · h3 · h6
2 in FH, and, due to the

multiplicative structure of FH, we denote a heap of size zero, ĥ0, by the empty string,

1. In an abuse of notation, we generally denote both heaps in the game G and letters

in FH by hn.

Definition. Let F : H // FH be the free functor on the heaps of H. That is, F

101
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takes hn, a heap of size n in the game G, to the letter with which it is associated in

FH. We extend F homomorphically over the disjunctive sum in H.

For the rest of this chapter, we will associate game positions with their words

under FH.

5.2 Indistinguishablility

Fix an impartial taking and breaking game G, as well as the play convention (either

normal or misère), and let FH be the free Abelian monoid on the heap alphabet of

G. Take u, v ∈ FH.

Definition. For u, v as defined above, we say that u is indistinguishable from v

over FH if for every element w ∈ FH, u · w and v · w are in the same outcome class

taken as positions in G.

Notation. If u is indistinguishable from v, we write u ρ v.

Lemma 1 of [8] shows that ρ is an equivalence relation on FH. Lemma 1 also

shows that ρ is compatible with the operation “·”.

Recall from Section 1.1.7, the definition of normal play convention game equiva-

lence: G = H if for all X, G + X has the same outcome as H + X. We can see that

there are similarities between these equivalence and indistinguishablility, however the

two are not interchangeable. In normal play convention game equivalence, G, H , and

X, do not need to be played under the same rule set (i.e. alphabet), whereas u, v,

and w are all taken from the same FH. In normal play convention game equivalence,

we are looking for equivalence over all games, whereas indistinguishablility concerns

itself only with positions in the fixed game G. Two games may be indistinguishable

under the game alphabet, but a game outside the alphabet might distinguish them.

5.3 The Indistinguishablility Quotient

Definition. Taking a fixed game G, with ρ the indistinguishablility relation on FH,

for H the heap alphabet of G, we define the indistinguishablility quotient of G
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or quotient monoid, denoted by Q(G), as follows

Q(G) = FH/ρ.

Suppose we have u, v in the same congruence class of Q(G). Then u ρ v. That is,

for every game w in FH, u ·w and v ·w are in the same outcome class. Taking w = 1,

we see that u and v are in the same outcome class. Thus all elements of a particular

congruence class are in the same outcome class.

A monoid structure can be placed on Q(G) as follows:

• Define the binary operation ·Q(G) on Q(G) as follows: [u]ρ ·Q(G) [v]ρ = [u · v]ρ.

• Define the identity [e]ρ to be the set of positions under the alphabet of G which

are indistinguishable from the empty game.

Suppose we have a game G played under the normal play convention, and consider

Q(G). Consider a position u in G. The Sprague-Grundy Theory says that u is

equivalent to some Nim heap, say k. Then [u]ρ ∈ Q(G) is the congruence class

of all positions using the alphabet of G which are also equivalent to k, so we can

think of Q(G) as a set of Nim positions, and, since ∗k + ∗k = 0, under the normal

play convention, Q(G) is a group with each element self-inverse. However, for games

played under the misère game convention, Q(G) does not necessarily have inverses,

and the most that can be said is that Q(G) is a monoid.

Definition. Given a set X, a partitioning function is a map ϕ : X // {P, N}.

Example 5.3.1. For a game G, the function which assigns to each position of G its

outcome class is a partioning function.

5.4 Finite Octal Games

[8] presents the following method for analysing certain misère finite octal games:

1) Fix an n ∈ N.
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2) Considering only heaps of size n or less (i.e. FHn
), find its “indistinguishablility

quotient” Mn. Although any Abelian monoid which satisfies conditions 3) and 5)

and can be proved correct as per 6) will work, we will take Mn
∼= FHn

/ρ. The

trick is determining all the relations on FHn
/ρ.

3) Define a pretending function Φn : Hn
// Mn which takes each heap of size

n or less to an element of Mn. For Mn
∼= FHn

/ρ, we take Φn as Φn(hm) =

[F(hm)]ρ. Extend Φn homomorphically over FHn
. The generators are of Mn are

Φn(h1), Φn(h2), · · ·, Φn(hn).

4) Using the Knuth-Bendix rewriting process ([7]), find a canonical presentation for

Mn ([2]). That is, we can write Mn as a list of elements and relations, such that

the product of any number of elements reduced under the rules of the relations

yields an element in the list, and for all other such lists of elements and relations

for Mn, the two are isomorphic.

5) Apply a partioning function to the elements of Mn. That is, for each element of

the monoid, assign whether it is in P or in N .

6) Prove that the analysis is correct. That is, show that the following diagram com-

mutes

H

Mn

Φn

OO

H {P,N}ϕ
//

Mn

{P,N}

ϕ

$$HHHHHHHHHHHHHHH

with the appropriate restrictions to heaps of size n or less. That is, Φ and the

partioning functions describe all the Previous and Next positions, provided all

moves are on heaps of size n or less. Not surprisingly, we call the partioning of

the monoid into its “outcome classes” the outcome partition of Mn. For an

element u ∈ Mn, we look to see the simplest position which could generate u,

say h with Φ(h) = u. If ϕ(h) ∈ O, then ϕ(u) must also be in outcome class O

for the diagram to commute. This is how we determine the outcome partition.

Once an outcome partition has been determined, we then check that the diagram

commutes for all positions.
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7) Repeat for m > n.

8) Should there exist a point where the following occurs:

For λ the length of the octal, if there exists p, r0 ∈ Z≥0 such that

Φ(hr+p) = Φ(hr) for all r such that r0 ≤ r < 2r0 + p + λ, and the

analysis is correct (as per 6)) for all r such that r0 ≤ r < 2r0 + p + λ,

then this monoid is correct to heap size r for all r ≥ r0. [8] presents a proof of

this statement in Section 10. We have then found a monoid which completely

describes the behaviour of G and whose elements are periodic with period p. That

is, if we reach a point at which by increasing the heap size considered, we are

not obtaining any new elements or relations in our monoid and the elements we

are obtaining have become periodic in nature and the analysis is correct, then

the monoid associated with G is periodic after that point and we can analyse the

misère octal game through the rules of the monoid with which it is associated.

Call this monoid M and the pretending function obtained from extending Φn over

all heaps Φ.

9) Once we have shown that M correctly describes the structure of the game G (or

at any of the earlier steps with Mn and restricting G to heaps of size n or less),

given a position in G, say h, pull this position through into the monoid using Φ◦F

and reduce it under the relations of the monoid to an element u in the canonical

form of M. Through the outcome partition, we can determine the outcome class

of u. Not only that, but under the rules of G, we can replace h by any other

element h′ such that Φ ◦ F(h′) = u, since they behave the same in the monoid.

Although steps 1) to 7) could apply to almost any sort of well-defined recursive

misère game, the theorem used in 8) is only for misère finite octal games.

5.4.1 Canonical Form

In 2) in the above list, we stated that we could write Mn as a list of elements and

relations in a canonical way, using the Knuth-Bendix rewriting process ([7]). How-

ever, the Knuth-Bendix rewriting process assumes that Mn is a finitely presentatable
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Abelian monoid. If we work with Mn
∼= FHn

/ρ, we can take the Abelian structure

from FHn
, since it doesn’t matter in what order the heaps are presented. Moreover,

since we are examining games from which we only have a finite number of heaps, that

is, games of the form hk1
+ hk2

+ · · · + hki
, then

Φ ◦ F(hk1
+ hk2

+ · · ·+ hki
) = Φ(hk1

· hk2
· · ·hki

)

= Φ(hk1
) · Φ(hk2

) · · ·Φ(hki
).

Moreover, Φ ◦ F is onto FHn
/ρ, so every element of FHn

/ρ can be written as the

product of finitely many generators of FHn
/ρ. By [9], Mn is finitely presentable.

5.4.2 Correctness

Definition. Suppose we have a position a in a misère finite octal game and a move

a // b legal under the rules of the game. Call the relation (Φ(a), Φ(b)) a move

relation in Mn.

Definition. A move in Mn is a relation (Φ(a), Φ(b)) where the relation is defined

if a // b is a valid move in G.

For our monoid, pretending function, and partioning function to be correct, we

need to show the following:

1) Given an element u ∈ Mn, such that ϕ(u) ∈ P, there is no move from u to another

position we claim to be in P.

2) Given an element v ∈ Mn such that v did not come from an position which has

no moves and such that ϕ(v) ∈ N , v has a move to a position we claim to be in

P.

To do so, we proceed as follows: Given a heap of size f , for f ≤ n, we consider

replacing hf by various smaller heaps according to the rules of G.

hf
//
∏

t

ht.

In an octal game, we replace hf by either one or two smaller heaps. We denote the

associated move relation by (sf , s).
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Definition. Each move relation that is formed as above, i.e. by taking a heap of size

less than or equal to n and one of its legal options, is called move pair to heap size

n.

Note that the to in the nomenclature does not refer that we are moving from a

heap of size m to a heap of size n, rather that these are the moves associated to heap

sizes up to and including a heap of size n. Let MPn be the set of all move pairs to

heap size n.

Suppose now we are given a game with a variety of disjunctive components G1 +

G2 + · · · + Gn in which to play. Under disjunctive game play, the player picks a

component, say without loss of generality G1, and moves in that component. That

is, we have

G1 + G2 + · · ·+ Gn
// G′

1 + G2 + · · ·+ Gn.

Then the game G2 + · · · + Gn stays unchanged, while the only game that changes is

G1. So we can think of this game as G1 + G, where G consists of all the components

in which we do not move on a given turn. We will use this idea to further analyse

move pairs to heap size n. By the canonical form construction of 2), every position in

the game G restricted to heaps of size n or less can be reduced to one of the canonical

elements of Mn through the use of the relations on Mn, say u ∈ Mn. Thus if we

have a position in the game G restricted to heaps of size n or less in which the next

move is in the heap of size f , then we have as a move relation (u · sf , u · s).

Definition. A move relation (u ·sf , u ·s) constructed as above is called a move pair

translate.

Let

Tn =
⋃

u ∈ Mn

(sf , s) ∈ MPn

(u · sf , u · s).

Thus Tn covers every possible move relation in the game G restricted to heaps of

size n or less. By the partioning function, ϕ(u · sf), ϕ(u · s) ∈ {P,N}, and we can

now check the two correctness requirements listed at the beginning of this section.
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Section 9.1.3 of [8] discusses in depth the algorithms used to verify the correctness of

the analysis to heap size n.

5.4.3 Misère solver

Aaron Siegel has written an extremely helpful program called Misère solver which

calculates the indistinguishablility quotient of a misère finite octal game, provided

the periodicity of the elements occurs before heap size 10 000. The analysis of 0.3103

in Section 5.4.4 makes us of the program.

The indistinguishably quotient and method from [8] are major breakthroughs in

impartial misère game analysis. Coupled with misère solver, many previously difficult

to analyse misère finite octal games are now, in some sense, solvable, at least within

the realm of the game itself.

5.4.4 Using the Indistinguishablility Quotient to Analyse 0.3103

Consider the wild finite octal game 0.3103. Its genus sequence is

+ 1 2 3 4 5

0+ 1031 220 002 120 0120

5+ 1031 21420 002 120 0120

10+ 1031 21420 002 120 0120

15+ · · ·

with Γ (h0) = 0120.

Before we begin, we assign e to denote the identity in FHn
for each n, which

always exists (take h0). Since h0 is a next player win, ϕ(e) ∈ N .

Start with n = 1. Take FH1
. Then we have two elements in our monoid, which

we will denote by e and a.

+ 1

0+ a

Since h1 is the same as a Nim heap of size one and Theorem 2.4.2 gives that 1031 +

1031 = 0120, we know exactly how a behaves with other games. Thus we get the
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relation a2 = e. This relation is not dependent on other elements, and so it will

continue throughout the analysis. Since h1 is a previous player win, ϕ(a) ∈ P.

Take n = 3. Claim the following:

+ 1 2 3

0+ a b b2

with the relation a2 = e. Since Γ (h2), Γ (h3) are both tame, and Theorem 2.4.2 tells

us how they behave in all sums of games, namely that 220 + 220 = 002, we get that

Φ(h2) · Φ(h2) = Φ(h3) and b3 = b. Again, this relation is not dependent on other

elements, and so it will continue throughout the analysis. Thus, M3 has presentation

< e, a, b | a2 = e, b3 = b > and can be written as

M3
∼= {e, a, b, b2, ab, ab2 | a2 = e, b3 = b},

with outcome partition ϕ(e), ϕ(b), ϕ(ab) ∈ N , ϕ(a), ϕ(b2), ϕ(ab2) ∈ P.

Continuing as such (and using misère solver), we get that

+ 1 2 3 4 5

0+ a b c2 c e

5+ a d c2 c e

10+ a d c2 c e

15+ · · ·

with

M ∼=< a, b, c, d | a2 = e, b4 = b2, b2c = c, c3 = ac2, b2d = b3, cd = bc, d2 = e > .

Rewriting, we have that

M ∼= {e, a, b, c, d, b2, b3, c2, ab, ac, ad, bc, bd, abd, ab2, ac2, bc2, c2d, b2c2, ab3

| a2 = e, b4 = b2, b2c = c, c3 = ac2, b2d = b3, cd = bc, d2 = e},

with the P positions a, b2, c2, ad, bc.

Now suppose we wish to analyse the game h5 + h7 + h12 + h18 + h19. Applying Φ

to each of these elements, we see that these are equivalent to the respective monoid
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elements e, d, d, c2, and c. Taking their product and applying the relations on M, we

get

eddc2c = c3d2

= c(cd)2

= c(bc)2

= (b2c)c2

= c3

= ac2,

which is a Next position. Moreover, the disjunctive sum of heaps of size five, seven,

twelve, eighteen, and nineteen behaves like the disjunctive sum of heaps of size one

and three within the rules of the game.

5.5 Indistinguishablility For Other Impartial Games

Ideally, we would like to extend the indistinguishablility quotient method, or some

sort of equivalent, to all impartial misère games, not just finite octal games. The

difficulty in applying the indistinguishablility method to certain types of games is

the notion of when (or indeed even if) the monoid has become periodic. In finite

octal games, each position is directly comparable to every other position - thinking

of the positions as heaps, either a heap has more tokens or fewer tokens than another

heap, and we can order the heaps in a logical manner and check for periodicity in the

monoid by pulling the heap into the monoid with the pretending function. However,

in some games two positions are not directly comparable, which causes difficulty in

determining what it means to become periodic, as the following example shows:

Example 5.5.1. Consider the game of Clobber played on a 1×n board. Each square

contains either a white stone, a black stone, or an empty space. For example:

.

In partizan Clobber, one player may only move white stones while the other player

may only move black stones. In impartial clobber on her turn, a player may either
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move a black or a white stone, and change from turn to turn. A move consists

of taking a stone and “clobbering” an adjacent piece of the opposite colour. The

clobbered piece is removed from the board, and the clobbering piece takes it place.

Pieces cannot move over empty spaces. For the position given above has the following

options played impartially:

// ,

,

,

,

,

.

Consider only Clobber positions with no spaces. Any such Clobber position has

four immediate successors achieved by appending an to the beginning, appending

a to the beginning, appending a to the end, or appending a to the end.

Note that this is different than with finite octals where a heap of size n has only one

immediate successor, a heap of size n + 1. Moreover, whereas there is only one heap

of size n in finite octal games, there are 2n positions on boards of size 1 × n with

no empty spaces, none of which are directly comparable. However, modding out by

symmetry, and saying that position A is less than position B if A is a substring of B,

we do get a structure, although it is nowhere near as manageable as the structure on

heaps in a finite octal game1. Not every pair of positions is directly comparable. For

example,

and

are not directly comparable, although they do have an least element greater than

both of the them, if we mod out by symmetry, namely:

.

1The structure we get for impartial Clobber is a finitely upwards and finitely downwards directed
set with binary joins.
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∅∅
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//
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//
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//
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//
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Figure 5.1: The finitely upwards and finitely downwards directed set of impartial
Clobber up to 1 × 4 boards with the ≤ relations between adjacent levels drawn in

We can still apply Steps 1) through 7) of Section 5.4 to obtain a monoid. However,

what does it mean for this monoid to become periodic?

One idea is that, for each path in the directed set, the path becomes periodic. If all

paths become periodic, then the monoid is periodic. However, in impartial Clobber,

paths are not closed structures under legal moves. A certain position may have a

legal move to a position not on the path. For example, consider the path

∅ // // // // · · ·

and the position

.
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The following is a legal move:

// ,

but

is not on the path.

Thus we cannot necessarily consider each path in isolation when determining the

monoid structure. The paths are interconnected, which might mean that we need not

look at every path to determine periodicity.

5.6 Future Work

One goal is to extend the indistinguishablility quotient method to non-octal impartial

games, such as the impartial Clobber game given in Example 5.5.1, as well as examine

whether indistinguishablility could be extended for use in partizan game analysis.

Another area would be to look at what algebraic (and possibly categorical) results

could be applied to the indistinguishablility quotient from monoid and lattice theory.

Section 7 of [8] gives some good starting points for further such investigation.



Appendix A

Wild Subtraction Octal Games with Octal Length Six or Less

Given a number d1d2 · · · dn in the table below, it represents the octal game 0.d1d2 · · · dn.

Those with a ∗ indicate that the subtraction octal game is not domesticatable. Those

in bold indicate that the subtraction octal game is almost domesticatable. There are

no wild subtraction octal games of length two or less.

These results were achieved with the aid of a computer program written by the

author which calculates the genera of heaps of finite subtraction octal games.

Table A.1: Wild Subtraction Octal Games with Octal

Length Six or Less

Wild Subtraction Octal Games

123

0122 0123 1023 1032 1033 1231 1232 1233

1321 1323 1331 2012∗ 2112∗ 3101∗ 3102 3103∗

3112 3122 3123 3131 3312

00122 00123 01022 01023 01032 01033 01122 01123

01221 01222 01223 01231 01232 01233 01302 01312

03012 03022 03023 03112 03122 03123 03201 03202

03211 03212 03301 03302 03311 03312 10023 10032

10033 10122 10123 10132 10133 10202 10203 10212

10213 10231 10232 10233 10321 10322 10323 10331

10332 10333 11032 11033 11203 11212 11213 11221

11223 11231 11233 11303 11331 12022 12023 12032

12033 12102 12112 12123 12133 12202 12203 12212

12213 12301 12311 12321 12322 12323 12331 12332

continued on next page
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Table A.1 – continued from previous page

12333 13032 13033 13102 13103 13112 13123 13211

13212 13213 13231 13232 13233 13303 13331 20101∗

20102∗ 20103∗ 20121∗ 20122∗ 20123∗ 20301 20311 21101∗

21102∗ 21103∗ 21121∗ 21122∗ 21123∗ 21301 21311 22012∗

22112∗ 23012∗ 23112∗ 30012 30032 30112 30132 31001∗

31002 31003∗ 31011∗ 31012 31013∗ 31022 31023 31031∗

31032 31033∗ 31112 31121 31131 31201∗ 31202∗ 31203∗

31211 31212 31213 31221∗ 31222∗ 31223∗ 31233 31312

31331 32021 32031 32121 32131 33101∗ 33103∗ 33122∗

33123 33312

000122 000123 001022 001023 001032 001033 001122 001123

001221 001222 001223 001231 001232 001233 010022 010023

010032 010033 010122 010123 010132 010133 010203 010213

010221 010222 010223 010231 010232 010233 010321 010322

010323 010331 010332 010333 011032 011033 011122 011123

011203 011213 011221 011222 011223 011231 011232 011233

012022 012023 012122 012123 012201 012211 012221 012222

012223 012231 012232 012233 012301 012311 012321 012322

012323 012331 012332 012333 013021 013022 013023 013121

013122 013123 013201 013202 013211 013212 013301 013302

013311 013312 022001 022011 022101 022111 023001 023011

023101 023111 030102 030112 030121 030221 030222 030223

030231 030232 030233 031102 031112 031121 031221 031222

031223 031231 031232 031233 032012 032021 032112 032121

032201 032202 032211 032212 032301 032302 032311 032312

033012 033021 033112 033121 033201 033202 033211 033212

033301 033302 033311 033312 100023 100032 100033 100122

100123 100133 100212 100213 100231 100232 100233 100312
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100313 100321 100322 100323 100331 100332 100333 101022

101023 101032 101033 101122 101123 101132 101133 101221

101222 101223 101231 101232 101233 101321 101322 101323

101331 101332 101333 102021 102022 102023 102031 102032

102033 102121 102122 102123 102131 102132 102133 102202

102203 102212 102213 102301 102302 102303 102311 102312

102313 102321 102322 102323 102331 102332 102333 103022

103023 103032 103033 103121 103122 103131 103132 103201

103211 103221 103222 103223 103231 103232 103233 103301

103311 103321 103322 103323 103331 103332 103333 110032

110122 110123 110132 110133 110203 110212 110213 110221

110223 110231 110233 110312 110313 110321 110322 110323

110331 110332 110333 111032 111033 111203 111213 111231

111331 112031 112032 112033 112121 112131 112132 112133

112211 112212 112213 112231 112232 112233 112302 112303

112311 112312 112313 112331 112332 112333 113021 113023

113031 113033 113121 113131 113201 113203 113211 113212

113213 113221 113223 113231 113233 113303 113311 113331

120221 120222 120223 120231 120232 120233 120321 120322

120323 120331 120332 120333 121002 121003 121021∗ 121022

121023 121031 121102 121103 121121∗ 121122 121123 121131

121222 121223 121231 121322 121323 121331 122021 122031

122121 122131 122202 122203 122212 122213 122302 122303

122312 122313 123002 123012 123021 123023 123031 123033

123102 123112 123121 123123 123131 123133 123201 123211

123221 123222 123223 123231 123232 123233 123301 123311

123321 123322 123323 123331 123332 123333 130102 130112

130321 130323 130331 130333 131002 131003 131021 131022
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131023 131031 131102 131103 131112 131121 131122 131123

131131 131231 131321 131331 132101 132111 132121 132131

132301 132302 132303 132311 132312 132313 132321 132322

132323 132331 132332 132333 133031 133102 133103 133111

133112 133121 133123 133131 133212 133213 133303 133331

200012∗ 200112∗ 201001∗ 201002∗ 201003∗ 201011∗ 201012∗ 201013∗

201021∗ 201022∗ 201023∗ 201031∗ 201032∗ 201033∗ 201112∗ 201122

201123 201201∗ 201202 201203∗ 201211∗ 201212 201213∗ 201221∗

201222∗ 201223∗ 201231∗ 201232∗ 201233∗ 201301 201311 203002

203003 203012 203022 203023 203102 203103 203112 203122

203123 203201 203211 203301 203311 210012∗ 210112∗ 211001∗

211002∗ 211003∗ 211011∗ 211012∗ 211013∗ 211021∗ 211022∗ 211023∗

211031∗ 211032∗ 211033∗ 211112∗ 211122 211123 211201∗ 211202

211203∗ 211211∗ 211212 211213∗ 211221∗ 211222∗ 211223∗ 211231∗

211232∗ 211233∗ 211301 211311 213002 213003 213012 213022

213023 213102 213103 213112 213122 213123 213201 213211

213301 213311 220101∗ 220102 220103∗ 220112 220121∗ 220122∗

220123∗ 221101∗ 221102 221103∗ 221112 221121∗ 221122∗ 221123∗

222012∗ 222112∗ 223012∗ 223112∗ 230101∗ 230102 230103∗ 230112

230121∗ 230122∗ 230123∗ 231101∗ 231102 231103∗ 231112 231121∗

231122∗ 231123∗ 232012∗ 232112∗ 233012∗ 233112∗ 300101∗ 300102

300103∗ 300121 300122∗ 300123 300132 300321 300322 300323

301101∗ 301102 301103∗ 301121 301122∗ 301123 301132 301321

301322 301323 302101 302102 302111 302112 302122 302132

303101 303102 303111 303112 303122 303132 310001∗ 310002

310003∗ 310011∗ 310012∗ 310013∗ 310022∗ 310023 310031∗ 310032∗

310033∗ 310101∗ 310102 310103∗ 310111∗ 310112 310113∗ 310121

310122∗ 310123 310131∗ 310132 310133∗ 310201 310202 310203
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310211 310212 310213 310221∗ 310222∗ 310223 310232 310233

310301 310302 310303 310311∗ 310312∗ 310313∗ 310321∗ 310322

310323 310331∗ 310332∗ 310333∗ 311002 311012 311021 311023

311031 311033 311101∗ 311102 311103∗ 311112 311121 311122∗

311123 311131 311202 311212 311221 311231 311312 311331

312001∗ 312002∗ 312003∗ 312011∗ 312012∗ 312013∗ 312021∗ 312022∗

312023∗ 312031∗ 312032∗ 312033∗ 312101∗ 312102 312103 312111

312112∗ 312113 312122∗ 312123 312131 312132∗ 312133 312201∗

312202∗ 312203∗ 312211∗ 312212∗ 312213∗ 312221∗ 312222∗ 312223∗

312231∗ 312232∗ 312233∗ 312301∗ 312302∗ 312303∗ 312311∗ 312313∗

312322 312323 312332∗ 312333 313003 313013 313023 313033

313102∗ 313103 313111 313112 313121 313122∗ 313123 313131

313312 313331 320211 320311 321211 321311 322023 322033

322123 322133 323023 323033 323123 323133 330021 330031

330121 330131 331002 331003 331011∗ 331012 331013∗ 331022

331023 331031∗ 331032∗ 331033∗ 331102 331103 331122 331123

331201∗ 331202∗ 331203∗ 331211∗ 331212 331213∗ 331221∗ 331222∗

331223∗ 331232∗ 331233 331311 331312 331331 333101∗ 333103∗

333122∗ 333123 333312



Appendix B

Genera of 2 x m Toppling Tower positions with eight or

fewer towers

We present here a chart of genera of 2 ×m Toppling Tower positions with eight or

fewer towers. Because of Theorem 2.4.2, Proposition 2.4.3, and Proposition 2.4.4, we

need only show the genera of eight or fewer contiguous towers or the disjunctive sum

of five contiguous towers and three contiguous towers, as the genera of the rest can

be calculated by the appropriate use of the above Theorem and Propositions. Genera

with a * indicate that the position is tame (genus is a tame value AND all options

are tame).

These results were achieved by hand by the author.

Table B.1: Genera of Toppling Towers in 2 × m boards

with eight towers or less

n Towers Genera

0 0120 *

1 1031 *

2 220 *

3 331 *

331 *

4 446 *

continued on next page
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Table B.1 – continued from previous page

n Towers Genera

446 *

220 *

002 *

1031 *

5 557 *

557∗

5146

5146

1531

557∗

continued on next page
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Table B.1 – continued from previous page

n Towers Genera

6 6657

664∗

446∗

220∗

6657

6657

446

6046

6657

002

6657

continued on next page
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Table B.1 – continued from previous page

n Towers Genera

21520

664∗

7 778(10)

775∗

775∗

775∗

778(10)

778(10)

775

775

1731

continued on next page
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Table B.1 – continued from previous page

n Towers Genera

778(10)

557

778(10)

778(10)

7746

778(10)

778(10)

331

220

775∗

continued on next page
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Table B.1 – continued from previous page

n Towers Genera

8 1531

88(10)∗

664∗

88(10)∗

664∗

857

457

664

88(10)

664

1031∗

continued on next page
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Table B.1 – continued from previous page

n Towers Genera

857

664

664

1531

88(10)

6657

557

669(11)

8875

0820

669(11)

continued on next page
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Table B.1 – continued from previous page

n Towers Genera

557

557

6146

113

002

669(11)

331

113

664

557

557

continued on next page
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Table B.1 – continued from previous page

n Towers Genera

002

21920

857

113

88(10)

657

657

657

657

220

220
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List of Symbols Used

0.a1a2a3a4a5a6 0. a1a2a3 a4a5a6 a4a5a6 a4a5a6 · · · 10

M
≡ G

M
≡ H if Γ (G) = Γ (H) 58

FH the free Abelian monoid on H 101

F The Free Functor 101

GL the set of Left options of a position G 2

GR the set of Right options of a position G 2

G+(G)
0 if G has no options

mex{G+(G′) | G′ is an option of G} else
16

G−(G)
1 if G has no options

mex{G−(G′) | G′ is an option of G} else
16

Γ (G) the genus of G 19

H {h1, h2, h3, · · ·} 101

Hn {h1, h2, h3, · · · , hn} 101

L Left has a winning strategy regardless of moving

first or second

4

mex{X} the least ordinal not in X 11

MPn move pairs to heap size n 107

N the Next player to move has a winning strategy 4n a Nim heap with n tokens 2
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130

⊕ Nim sum 12

N (G) For G = 0.d1d2 · · ·dn, a finite subtraction octal

game, N (G) = 0.d1d2 · · · dn3̄

75

P the Previous player to move has a winning strategy 4

Q(G) FH/ρ 103

R Right has a winning strategy regardless of moving

first or second

4

u ρ v u is indistinguishable from v 102

∗ the game {0|0} 8

∗n {0, ∗, ∗2, ∗3, · · · , ∗n−1|0, ∗, ∗2, ∗3, ∗n−1} 11

T the set of tame games 59

[T ] T /
M
≡ 59



Index

almost domesticatable, 76

Clobber, 110

impartial, 110

partizan, 110

combinatorial game, see game

disjunctive sum, 3

domesticatable, 76

finite subtraction octal, 63

nimify, 75

follower, 3

game

Clobber, 110

impartial, 110

partizan, 110

definition, 1

disjunctive sum, 3

equivalence, 7

finite subtraction octal, 63

follower, 3

impartial, 7

in terms of options, 3

misère, see misère game

normal, see normal game

octal, 9

finite subtraction, 63

subtraction, 63

option, 2

left, 2

right, 2

outcome class, 4

partizan, 7

perfect play, 4

subtraction, 10

subtraction octal, 63

Taking and Breaking, 9

Taking But Not Breaking, 62

Toppling Towers, 86

value, 7

genus, 19

stabilise, 22

heap alphabet, 101

impartial game, 7

indistinguishable over FH, 102

indistinguishablility quotient, 102

Left player, 1

mex, 11

minimal excludant, see mex

misère game

definition, 1

genus, 19

play convention, 1

tame, 38

wild, 38

misère Grundy value, see genus

move in Mn, 106

move pair to heap size n, 107
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move pair translate, 107

move relation, 106

Nim

misère play, 2

normal play, 2

rules, 2

Nim sum, 12

nimber, 10

nimify, 75

Nimming Number, 76

normal game

definition, 1

equivalence, 7

play convention, 1

octal game, 9

finite subtraction octal, 63

subtraction octal, 63

almost domesticatable, 76

domesticatable, 76

option, 2

left, 2

right, 2

outcome class, 4

L, 4

N , 4

P, 4

R, 4

outcome partition, 104

partioning function, 103

partizan game, 7

perfect play, 4

pretending function, 104

quotient monoid, see indistinguishablility

quotient

Right player, 1

stabilise, 22

subtraction game, 10

subtraction set, 10

subtraction octal, 63

finite, 63

Taking and Breaking, 9

Taking But Not Breaking, 62

tame

game, 38

tame value, 38

Toppling Towers, 86

wild

game, 38


