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Reprise: Misère Quotients (1)

A — a set of impartial games, closed under sums and
options. A is a commutative monoid with identity 0.

Let X,Y ∈ A . Define

X ≡A Y ⇐⇒ for all Z ∈ A ,

X + Z and Y + Z have the same outcome.

Define the quotient Q = Q(A ) by

Q(A ) = A / ≡A

and let Φ : A → Q be the quotient map. (So Φ(X) is the
equivalence class of X modulo ≡A .)
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Reprise: Misère Quotients (2)

If Φ(X) = Φ(Y ), then X and Y have the same outcome.

Let P = {Φ(X) : X is a P-position}.

We call P the P-partition of Q(A ). The structure (Q,P) is
the misère quotient of A .
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Reprise: Misère Quotients (3)

Let Γ be a heap game. Let A be the heap algebra—a free
commutative monoid on the countable set of generators
{H0, H1, H2, . . .}.

Given the misère quotient (Q,P) and the single-heap
values Φ(Hk), we can read off a strategy for Γ.

Namely, to find the outcome of Hi + Hj + Hk (say), we
compute Φ(Hi),Φ(Hj),Φ(Hk) ∈ Q, and check whether
Φ(Hi)Φ(Hj)Φ(Hk) ∈ P.
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Reprise: Misère Quotients (4)

These techniques have revealed strategies for many
previously-unsolved octal games.

For example, 0.15 (Guiles—“Guy’s Kayles”).

Either :

Completely remove a heap of one or two tokens; or

Remove exactly two tokens from a heap of size ≥ 4,
splitting the remainder into exactly two non-empty
heaps.
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Misère Guiles (1)

Q ∼= 〈a, b, c, d, e, f, g, h, i | a2 = 1, b4 = b2, bc = ab3, c2 = b2,

b2d = d, cd = ad, d3 = ad2, b2e = b3, de = bd, be2 = ace,
ce2 = abe, e4 = e2, bf = b3, df = d, ef = ace, cf2 = cf,
f3 = f2, b2g = b3, cg = ab3, dg = bd, eg = be, fg = b3,
g2 = bg, bh = bg, ch = ab3, dh = bd, eh = bg, fh = b3,
gh = bg, h2 = b2, bi = bg, ci = ab3, di = bd, ei = be, fi = b3,
gi = bg, hi = b2, i2 = b2〉

P = {a, b2, bd, d2, ae, ae2, ae3, af, af2, ag, ah, ai}
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Misère Guiles (2)

0 1 2 3 4 5 6 7 8 9

0 1 a a 1 a a b b a b

10 b a a 1 c c b b d b

20 e c c f c c b g d h

30 i ab2 abg f abg abe b3 h d h

40 h ab2 abe f2 abg abg b3 h d h

50 h ab2 abg f2 abg abg b3 b3 d b3

60 b3 ab2 abg f2 abg abg b3 b3 d b3

70 b3 ab2 ab2 f2 ab2 ab2 b3 b3 d b3

80 b3 ab2 ab2 f2 ab2 ab2 b3 b3 d b3

90 b3 ab2 ab2 f2 · · ·
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Normal Guiles

0 1 2 3 4 5 6 7 8 9

0 0 1 1 0 1 1 2 2 1 2

10 2 1 1 0 1 1 2 2 1 2

20 2 1 1 0 1 1 2 2 1 2

30 2 1 1 0 1 1 2 2 1 2

40 2 1 1 0 1 1 2 2 1 2

50 2 1 1 0 1 1 2 2 1 2

60 2 1 1 0 1 1 2 2 1 2

70 2 1 1 0 1 1 2 2 1 2

80 2 1 1 0 1 1 2 2 1 2

90 2 1 1 0 · · ·
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Misère Nim (1)

Suppose we are given a sum of nim-heaps

Hi + Hj + Hk

In normal play, this is a P-position just if the Grundy values
sum to 0:

i ⊕ j ⊕ k = 0

The same is true in misère play, unless all the heaps have
size 1.

Proof : Play normal Nim until your move would leave only
heaps of size 1. Then play to leave an odd number of
heaps of size 1.
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Misère Nim (2)

So the strategies for normal and misère Nim coincide so
long as there is an n-heap for some n > 1.

Goal: find an analogous statement for other misère games.
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Misère Nim (3)

The quotient for misère Nim is

Q = 〈a, b, c, d, . . . | a2 = 1,

b3 = b, c3 = c, d3 = d, . . . ,

b2 = c2 = d2 = · · ·〉

P = {a, b2}, Φ(∗) = a, Φ(∗2) = b, Φ(∗4) = c, Φ(∗8) = d, . . .

Crucial fact! b2 is an idempotent : b2 · b2 = b2, and we have

Q \ {1, a} ∼= Z2 ⊕ Z2 ⊕ Z2 ⊕ · · · ,

with identity b2. This looks just like the “normal quotient.”
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Some Semigroup Theory (1)

Let Q be a commutative monoid.

x ∈ Q is an idempotent iff x2 = x.

If x, y ∈ Q, then x divides y iff xz = y for some z ∈ Q.

x and y are mutually divisible iff x divides y and y divides x.

Let x be an idempotent. Let

E = {y ∈ Q : x, y are mutually divisible}.

Then E is a group, with identity x. Indeed, if y ∈ E and
yz = x, then z serves as an inverse for y.
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Some Semigroup Theory (2)

Now suppose Q is finite.

Let z1, z2, . . . , zn enumerate the idempotents of Q.

Put z = z1 · z2 · z3 · · · · · zn.

Now z is an idempotent, and z · x = z (z absorbs x) for any
idempotent x ∈ Q.

Let K be the group

K = {y ∈ Q : z, y are mutually divisible}.

K is called the kernel of Q.
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Some Semigroup Theory (3)

There is a natural surjective homomorphism from Q onto K:

x 7→ x · z

To see that x · z ∈ K: let y = x · z. We must show y, z are
mutually divisible. Clearly z divides y. Now consider

y, y2, y3, y4, . . .

Since Q is finite, eventually we must have yn = yn+k. But
then yik is an idempotent (ik > n).

By definition of z, yik divides z, so y divides z.

For surjectivity, note that z is the group identity of K.
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Misère Nim (4)

Let’s see how this works for misère Nim to some finite heap
size (say ∗15):

Q = 〈a, b, c, d | a2 = 1,

b3 = b, c3 = c, d3 = d,

b2 = c2 = d2〉

The only idempotents are 1 and b2, so z = 1 · b2 = b2.

K = Q \ {1, a}. As we saw earlier, this gives

K ∼= Z2 ⊕ Z2 ⊕ Z2 ⊕ Z2.
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Misère Nim (5)

Multiplication by z = b2 induces a mapping

Q → Z2 ⊕ Z2 ⊕ Z2 ⊕ Z2.

This mapping sends every x ∈ Q to its Grundy value!

In other words, multiplication by b2 sends each x ∈ Q to its
“normal-play residue” in K.

If x is already in K, then b2 · x = x, and the normal and
misère outcomes coincide.
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Misère Nim (6)

Remember the strategy for misère Nim:

Play normal Nim until your move would leave
only heaps of size 1. Then play to leave an

odd number of heaps of size 1.

We can now rephrase this:

Play normal Nim until your move would leave a
position outside of K. Then pay attention to

the fine structure of the misère quotient.

We now have the right framework for a generalization.
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Misère Guiles (3)

Let (Q,P) be the misère quotient of Guiles.

The idempotents of Q are 1, b2, d2, e2, f2. Multiplying them
gives

z = 1 · b2 · d2 · e2 · f2 = d2.

The kernel K is the mutual divisibility class of d2:

K = {d2, ad2, bd2, abd2}.

K ∼= Z2 ⊕ Z2.
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Misère Guiles (4)

0 1 2 3 4 5 6 7 8 9

0 1 a a 1 a a b b a b

10 b a a 1 c c b b d b

20 e c c f c c b g d h

30 i ab2 abg f abg abe b3 h d h

40 h ab2 abe f2 abg abg b3 h d h
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Misère Guiles (4)

0 1 2 3 4 5 6 7 8 9

0 d2 ad2 ad2 d2 ad2 ad2 bd2 bd2 ad2 bd2

10 bd2 ad2 ad2 d2 ad2 ad2 bd2 bd2 ad2 bd2

20 bd2 ad2 ad2 d2 ad2 ad2 bd2 bd2 ad2 bd2

30 bd2 ad2 ad2 d2 ad2 ad2 bd2 bd2 ad2 bd2

40 bd2 ad2 ad2 d2 ad2 ad2 bd2 bd2 ad2 bd2

50 bd2 ad2 ad2 d2 ad2 ad2 bd2 bd2 ad2 bd2

60 bd2 ad2 ad2 d2 ad2 ad2 bd2 bd2 ad2 bd2

70 bd2 ad2 ad2 d2 ad2 ad2 bd2 bd2 ad2 bd2

80 bd2 ad2 ad2 d2 ad2 ad2 bd2 bd2 ad2 bd2

90 bd2 ad2 ad2 d2 · · ·
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Misère Guiles (4)

0 1 2 3 4 5 6 7 8 9

0 0 1 1 0 1 1 2 2 1 2

10 2 1 1 0 1 1 2 2 1 2

20 2 1 1 0 1 1 2 2 1 2

30 2 1 1 0 1 1 2 2 1 2

40 2 1 1 0 1 1 2 2 1 2

50 2 1 1 0 1 1 2 2 1 2

60 2 1 1 0 1 1 2 2 1 2

70 2 1 1 0 1 1 2 2 1 2

80 2 1 1 0 1 1 2 2 1 2

90 2 1 1 0 · · ·
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Misère Guiles (5)

If we identify

0 ∼ d2, ∗ ∼ ad2, ∗2 ∼ bd2, ∗3 ∼ abd2,

then we find K ∼= {0, ∗, ∗2, ∗3}! As with misère Nim,
multiplication by z = d2 maps the misère quotient onto its
normal residue.

Now d2 ∈ P, and ad2, bd2, abd2 6∈ P. We conclude with a
strategy for misère Guiles . . .

Play normal Guiles until your move would leave
a position outside of K. Then pay attention to

the fine structure of the misère quotient.
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Other Games

This works for many, many, many games. If we are playing
Γ on some massive number of heaps, we can forget all
about misère-play complexities so long as the position
remains “rich enough” to stay inside of K.

Only when the environment “thins out” do we need to start
paying attention.

A cautionary tale:

Q = Q((2+31)(2+2)2+3)

Here the identity of K is not a misère P-position. So the
normal and misère strategies do not coincide. However, it is
still true that K ∼= the normal quotient, as a group.
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The Normal Embedding Conjecture (1)

Conjecture: In any misère quotient, K is isomorphic to the
normal quotient.

It’s true under the following two assumptions:

(faithfulness) If Φ(X) = Φ(Y ), then X and Y have the
same Grundy value.

(regularity) K contains just one P-position.

So the Conjecture is equivalent to the question: does there
exist a non-faithful or irregular quotient?
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The Normal Embedding Conjecture (2)

There is overwhelming experimental evidence for it . . . but
little reason to believe.

The history of misère games is rife with such conjectures
that later prove to be false.
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In Fact:

Old Conjecture: If Q is finite, then every element of Q has
period 1 or 2. (The period of x is the least k for which
xn+k = xn, for some n.)

Based on new evidence, we’ve been forced to revise this
slightly.

New Conjecture: For every k ≥ 1, there exists a quotient Q
and an element x ∈ Q of period k.

Q((2+30)(2+210)3+21)

has an element x 6= 1 satisfying x3 = 1.
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The Misère Mex Mystery

We are given Q(A ), together with some game G whose
options are in A .

We compute Φ(G′) for each such option G′. How can we
predict Φ(G)?

In normal play it’s just the Grundy mex.

In misère play, we need more information.
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Transition Algebras (1)

Let x = Φ(G) and consider

E = Φ′′G = {Φ(G′) : G′ is an option of G}.

We consider the pair (x, E). Define Ψ(G) = (x, E).

The misère quotient is given by

Q(A ) = {Φ(G) : G ∈ A }.

The transition algebra is given by

T (A ) = {(Φ(G),Φ′′G) : G ∈ A } = {Ψ(G) : G ∈ A }.

The Misère Mex Mystery – p. 26/29



Transition Algebras (1)

Let x = Φ(G) and consider

E = Φ′′G = {Φ(G′) : G′ is an option of G}.

We consider the pair (x, E). Define Ψ(G) = (x, E).

The misère quotient is given by

Q(A ) = {Φ(G) : G ∈ A }.

The transition algebra is given by

T (A ) = {(Φ(G),Φ′′G) : G ∈ A } = {Ψ(G) : G ∈ A }.

The Misère Mex Mystery – p. 26/29



Transition Algebras (2)

There is a natural multiplicative structure on T (A ).

(x, E) · (y,F) = (xy, xF ∪ yE).

We are essentially rephasing the definition of +.

Ψ(G + H) = Ψ(G) + Ψ(H).

So T (A ) is another monoid, and the following diagram
commutes:

A

Φ
""E

E

E

E

E

E

E

E

E

Ψ
// T (A )

π
��

Q(A )
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Transition Algebras (3)

Given a game G with each option G′ ∈ A , let B be the
closure of A ∪ {G}.

Given T (A ), we can instantly determine whether
Q(B) = Q(A ). If it does, we can instantly compute the
value of Φ(G).

In other words, T (A ) determines the mex behavior for
Q(A ).

The Normal Embedding Conjecture states that on the
kernel K < Q, the normal and misère mex functions
coincide. So if it’s true, we can prove it (in theory) just by
looking at transition algebras.
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Q(B) = Q(A ). If it does, we can instantly compute the
value of Φ(G).

In other words, T (A ) determines the mex behavior for
Q(A ).

The Normal Embedding Conjecture states that on the
kernel K < Q, the normal and misère mex functions
coincide. So if it’s true, we can prove it (in theory) just by
looking at transition algebras.
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Transition Algebras (4)

Transition algebras also answer the following question.
Given a monoid Q and a subset P ⊂ Q, is (Q,P)
isomorphic to the misère quotient of some set A ?

But this is the subject of another talk.
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