# The Misère Mex Mystery 

Thane E. Plambeck \& Aaron N. Siegel

aaron.n.siegel@gmail.com

## Reprise: Misère Quotients (1)

$\mathscr{A}$ - a set of impartial games, closed under sums and options. $\mathscr{A}$ is a commutative monoid with identity 0 .

## Reprise: Misère Quotients (1)

$\mathscr{A}$ - a set of impartial games, closed under sums and options. $\mathscr{A}$ is a commutative monoid with identity 0 .

Let $X, Y \in \mathscr{A}$. Define

$$
X \equiv_{\mathscr{A}} Y \Longleftrightarrow \text { for all } Z \in \mathscr{A},
$$

$X+Z$ and $Y+Z$ have the same outcome.

## Reprise: Misère Quotients (1)

$\mathscr{A}$ - a set of impartial games, closed under sums and options. $\mathscr{A}$ is a commutative monoid with identity 0 .

Let $X, Y \in \mathscr{A}$. Define

$$
X \equiv_{\mathscr{A}} Y \Longleftrightarrow \text { for all } Z \in \mathscr{A},
$$

$X+Z$ and $Y+Z$ have the same outcome.
Define the quotient $\mathcal{Q}=\mathcal{Q}(\mathscr{A})$ by

$$
\mathcal{Q}(\mathscr{A})=\mathscr{A} / \equiv_{\mathscr{A}}
$$

and let $\Phi: \mathscr{A} \rightarrow \mathcal{Q}$ be the quotient map. (So $\Phi(X)$ is the equivalence class of $X$ modulo $\equiv_{\mathscr{A}}$.)

## Reprise: Misère Quotients (2)

If $\Phi(X)=\Phi(Y)$, then $X$ and $Y$ have the same outcome.
Let $\mathcal{P}=\{\Phi(X): X$ is a $\mathscr{P}$-position $\}$.
We call $\mathcal{P}$ the $\mathscr{P}$-partition of $\mathcal{Q}(\mathscr{A})$. The structure $(\mathcal{Q}, \mathcal{P})$ is the misère quotient of $\mathscr{A}$.

## Reprise: Misère Quotients (3)

Let $\Gamma$ be a heap game. Let $\mathscr{A}$ be the heap algebra-a free commutative monoid on the countable set of generators $\left\{H_{0}, H_{1}, H_{2}, \ldots\right\}$.

Given the misère quotient $(\mathcal{Q}, \mathcal{P})$ and the single-heap values $\Phi\left(H_{k}\right)$, we can read off a strategy for $\Gamma$.

## Reprise: Misère Quotients (3)

Let $\Gamma$ be a heap game. Let $\mathscr{A}$ be the heap algebra-a free commutative monoid on the countable set of generators $\left\{H_{0}, H_{1}, H_{2}, \ldots\right\}$.

Given the misère quotient $(\mathcal{Q}, \mathcal{P})$ and the single-heap values $\Phi\left(H_{k}\right)$, we can read off a strategy for $\Gamma$.

Namely, to find the outcome of $H_{i}+H_{j}+H_{k}$ (say), we compute $\Phi\left(H_{i}\right), \Phi\left(H_{j}\right), \Phi\left(H_{k}\right) \in \mathcal{Q}$, and check whether $\Phi\left(H_{i}\right) \Phi\left(H_{j}\right) \Phi\left(H_{k}\right) \in \mathcal{P}$.

## Reprise: Misère Quotients (4)

These techniques have revealed strategies for many previously-unsolved octal games.

For example, 0.15 (Guiles-"Guy’s Kayles").
Either:

- Completely remove a heap of one or two tokens; or
- Remove exactly two tokens from a heap of size $\geq 4$, splitting the remainder into exactly two non-empty heaps.


## Misère Guiles (1)

$$
\begin{aligned}
& \mathcal{Q} \cong\langle a, b, c, d, e, f, g, h, i| a^{2}=1, b^{4}=b^{2}, b c=a b^{3}, c^{2}=b^{2}, \\
& b^{2} d=d, c d=a d, d^{3}=a d^{2}, b^{2} e=b^{3}, d e=b d, b e^{2}=a c e \\
& c e^{2}=a b e, e^{4}=e^{2}, b f=b^{3}, d f=d, e f=a c e, c f^{2}=c f \\
& f^{3}=f^{2}, b^{2} g=b^{3}, c g=a b^{3}, d g=b d, e g=b e, f g=b^{3} \\
& g^{2}=b g, b h=b g, c h=a b^{3}, d h=b d, e h=b g, f h=b^{3}, \\
& g h=b g, h^{2}=b^{2}, b i=b g, c i=a b^{3}, d i=b d, e i=b e, f i=b^{3}, \\
& \left.g i=b g, h i=b^{2}, i^{2}=b^{2}\right\rangle \\
& \mathcal{P}=\left\{a, b^{2}, b d, d^{2}, a e, a e^{2}, a e^{3}, a f, a f^{2}, a g, a h, a i\right\}
\end{aligned}
$$

## Misère Guiles (2)

|  | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 |
| ---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 0 | 1 | $a$ | $a$ | 1 | $a$ | $a$ | $b$ | $b$ | $a$ | $b$ |
| 10 | $b$ | $a$ | $a$ | 1 | $c$ | $c$ | $b$ | $b$ | $d$ | $b$ |
| 20 | $e$ | $c$ | $c$ | $f$ | $c$ | $c$ | $b$ | $g$ | $d$ | $h$ |
| 30 | $i$ | $a b^{2}$ | $a b g$ | $f$ | $a b g$ | $a b e$ | $b^{3}$ | $h$ | $d$ | $h$ |
| 40 | $h$ | $a b^{2}$ | $a b e$ | $f^{2}$ | $a b g$ | $a b g$ | $b^{3}$ | $h$ | $d$ | $h$ |
| 50 | $h$ | $a b^{2}$ | $a b g$ | $f^{2}$ | $a b g$ | $a b g$ | $b^{3}$ | $b^{3}$ | $d$ | $b^{3}$ |
| 60 | $b^{3}$ | $a b^{2}$ | $a b g$ | $f^{2}$ | $a b g$ | $a b g$ | $b^{3}$ | $b^{3}$ | $d$ | $b^{3}$ |
| 70 | $b^{3}$ | $a b^{2}$ | $a b^{2}$ | $f^{2}$ | $a b^{2}$ | $a b^{2}$ | $b^{3}$ | $b^{3}$ | $d$ | $b^{3}$ |
| 80 | $b^{3}$ | $a b^{2}$ | $a b^{2}$ | $f^{2}$ | $a b^{2}$ | $a b^{2}$ | $b^{3}$ | $b^{3}$ | $d$ | $b^{3}$ |
| 90 | $b^{3}$ | $a b^{2}$ | $a b^{2}$ | $f^{2}$ | $\cdots$ |  |  |  |  |  |

## Normal Guiles

|  | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 |
| ---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 0 | 0 | 1 | 1 | 0 | 1 | 1 | 2 | 2 | 1 | 2 |
| 10 | 2 | 1 | 1 | 0 | 1 | 1 | 2 | 2 | 1 | 2 |
| 20 | 2 | 1 | 1 | 0 | 1 | 1 | 2 | 2 | 1 | 2 |
| 30 | 2 | 1 | 1 | 0 | 1 | 1 | 2 | 2 | 1 | 2 |
| 40 | 2 | 1 | 1 | 0 | 1 | 1 | 2 | 2 | 1 | 2 |
| 50 | 2 | 1 | 1 | 0 | 1 | 1 | 2 | 2 | 1 | 2 |
| 60 | 2 | 1 | 1 | 0 | 1 | 1 | 2 | 2 | 1 | 2 |
| 70 | 2 | 1 | 1 | 0 | 1 | 1 | 2 | 2 | 1 | 2 |
| 80 | 2 | 1 | 1 | 0 | 1 | 1 | 2 | 2 | 1 | 2 |
| 90 | 2 | 1 | 1 | 0 | $\cdots$ |  |  |  |  |  |

## Misère Nim (1)

Suppose we are given a sum of nim-heaps

$$
H_{i}+H_{j}+H_{k}
$$

In normal play, this is a $\mathscr{P}$-position just if the Grundy values sum to 0 :

$$
i \oplus j \oplus k=0
$$

## Misère Nim (1)

Suppose we are given a sum of nim-heaps

$$
H_{i}+H_{j}+H_{k}
$$

In normal play, this is a $\mathscr{P}$-position just if the Grundy values sum to 0 :

$$
i \oplus j \oplus k=0
$$

The same is true in misère play, unless all the heaps have size 1.

## Misère Nim (1)

Suppose we are given a sum of nim-heaps

$$
H_{i}+H_{j}+H_{k}
$$

In normal play, this is a $\mathscr{P}$-position just if the Grundy values sum to 0 :

$$
i \oplus j \oplus k=0
$$

The same is true in misère play, unless all the heaps have size 1.

Proof: Play normal Nim until your move would leave only heaps of size 1. Then play to leave an odd number of heaps of size 1 .

## Misère Nim (2)

So the strategies for normal and misère Nim coincide so long as there is an $n$-heap for some $n>1$.

## Misère Nim (2)

So the strategies for normal and misère Nim coincide so long as there is an $n$-heap for some $n>1$.

Goal: find an analogous statement for other misère games.

## Misère Nim (3)

The quotient for misère Nim is

$$
\begin{array}{l|l}
\mathcal{Q}=\langle a, b, c, d, \ldots| & a^{2}=1, \\
& b^{3}=b, c^{3}=c, d^{3}=d, \ldots, \\
& \left.b^{2}=c^{2}=d^{2}=\cdots\right\rangle
\end{array}
$$

$$
\mathcal{P}=\left\{a, b^{2}\right\}, \Phi(*)=a, \Phi(* 2)=b, \Phi(* 4)=c, \Phi(* 8)=d, \ldots
$$

## Misère Nim (3)

The quotient for misère Nim is

$$
\begin{gathered}
\mathcal{Q}=\langle a, b, c, d, \ldots| \\
\\
\\
a^{2}=1, \\
b^{3}=b, c^{3}=c, d^{3}=d, \ldots, \\
\\
\left.b^{2}=c^{2}=d^{2}=\cdots\right\rangle \\
\mathcal{P}=\left\{a, b^{2}\right\}, \Phi(*)=a, \Phi(* 2)=b, \Phi(* 4)=c, \Phi(* 8)=d, \ldots
\end{gathered}
$$

Crucial fact! $b^{2}$ is an idempotent: $b^{2} \cdot b^{2}=b^{2}$, and we have

$$
\mathcal{Q} \backslash\{1, a\} \cong \mathbb{Z}_{2} \oplus \mathbb{Z}_{2} \oplus \mathbb{Z}_{2} \oplus \cdots
$$

with identity $b^{2}$. This looks just like the "normal quotient."

## Some Semigroup Theory (1)

Let $\mathcal{Q}$ be a commutative monoid.
$x \in \mathcal{Q}$ is an idempotent iff $x^{2}=x$.
If $x, y \in \mathcal{Q}$, then $x$ divides $y$ iff $x z=y$ for some $z \in \mathcal{Q}$.
$x$ and $y$ are mutually divisible iff $x$ divides $y$ and $y$ divides $x$.

## Some Semigroup Theory (1)

Let $\mathcal{Q}$ be a commutative monoid.
$x \in \mathcal{Q}$ is an idempotent iff $x^{2}=x$.
If $x, y \in \mathcal{Q}$, then $x$ divides $y$ iff $x z=y$ for some $z \in \mathcal{Q}$.
$x$ and $y$ are mutually divisible iff $x$ divides $y$ and $y$ divides $x$.
Let $x$ be an idempotent. Let

$$
\mathcal{E}=\{y \in \mathcal{Q}: x, y \text { are mutually divisible }\} .
$$

Then $\mathcal{E}$ is a group, with identity $x$. Indeed, if $y \in \mathcal{E}$ and $y z=x$, then $z$ serves as an inverse for $y$.

## Some Semigroup Theory (2)

Now suppose $\mathcal{Q}$ is finite.
Let $z_{1}, z_{2}, \ldots, z_{n}$ enumerate the idempotents of $\mathcal{Q}$.
Put $z=z_{1} \cdot z_{2} \cdot z_{3} \cdots \cdots z_{n}$.
Now $z$ is an idempotent, and $z \cdot x=z(z$ absorbs $x)$ for any idempotent $x \in \mathcal{Q}$.

## Some Semigroup Theory (2)

Now suppose $\mathcal{Q}$ is finite.
Let $z_{1}, z_{2}, \ldots, z_{n}$ enumerate the idempotents of $\mathcal{Q}$.
Put $z=z_{1} \cdot z_{2} \cdot z_{3} \cdots \cdots z_{n}$.
Now $z$ is an idempotent, and $z \cdot x=z(z$ absorbs $x)$ for any idempotent $x \in \mathcal{Q}$.

Let $\mathcal{K}$ be the group

$$
\mathcal{K}=\{y \in \mathcal{Q}: z, y \text { are mutually divisible }\} .
$$

$\mathcal{K}$ is called the kernel of $\mathcal{Q}$.

## Some Semigroup Theory (3)

There is a natural surjective homomorphism from $\mathcal{Q}$ onto $\mathcal{K}$ :

$$
x \mapsto x \cdot z
$$

To see that $x \cdot z \in \mathcal{K}$ : let $y=x \cdot z$. We must show $y, z$ are mutually divisible. Clearly $z$ divides $y$. Now consider

$$
y, y^{2}, y^{3}, y^{4}, \ldots
$$

## Some Semigroup Theory (3)

There is a natural surjective homomorphism from $\mathcal{Q}$ onto $\mathcal{K}$ :

$$
x \mapsto x \cdot z
$$

To see that $x \cdot z \in \mathcal{K}$ : let $y=x \cdot z$. We must show $y, z$ are mutually divisible. Clearly $z$ divides $y$. Now consider

$$
y, y^{2}, y^{3}, y^{4}, \ldots
$$

Since $\mathcal{Q}$ is finite, eventually we must have $y^{n}=y^{n+k}$. But then $y^{i k}$ is an idempotent $(i k>n)$.

By definition of $z, y^{i k}$ divides $z$, so $y$ divides $z$.
For surjectivity, note that $z$ is the group identity of $\mathcal{K}$.

## Misère Nim (4)

Let's see how this works for misère Nim to some finite heap size (say $* 15$ ):

$$
\begin{array}{ll}
\mathcal{Q}=\langle a, b, c, d \quad| & a^{2}=1, \\
& b^{3}=b, c^{3}=c, d^{3}=d, \\
& \left.b^{2}=c^{2}=d^{2}\right\rangle
\end{array}
$$

The only idempotents are 1 and $b^{2}$, so $z=1 \cdot b^{2}=b^{2}$.

## Misère Nim (4)

Let's see how this works for misère Nim to some finite heap size (say $* 15$ ):

$$
\begin{array}{ll}
\mathcal{Q}=\langle a, b, c, d \quad| & a^{2}=1 \\
& b^{3}=b, c^{3}=c, d^{3}=d, \\
& \left.b^{2}=c^{2}=d^{2}\right\rangle
\end{array}
$$

The only idempotents are 1 and $b^{2}$, so $z=1 \cdot b^{2}=b^{2}$.
$\mathcal{K}=\mathcal{Q} \backslash\{1, a\}$. As we saw earlier, this gives

$$
\mathcal{K} \cong \mathbb{Z}_{2} \oplus \mathbb{Z}_{2} \oplus \mathbb{Z}_{2} \oplus \mathbb{Z}_{2}
$$

## Misère Nim (5)

Multiplication by $z=b^{2}$ induces a mapping

$$
\mathcal{Q} \rightarrow \mathbb{Z}_{2} \oplus \mathbb{Z}_{2} \oplus \mathbb{Z}_{2} \oplus \mathbb{Z}_{2}
$$

This mapping sends every $x \in \mathcal{Q}$ to its Grundy value!

## Misère Nim (5)

Multiplication by $z=b^{2}$ induces a mapping

$$
\mathcal{Q} \rightarrow \mathbb{Z}_{2} \oplus \mathbb{Z}_{2} \oplus \mathbb{Z}_{2} \oplus \mathbb{Z}_{2}
$$

This mapping sends every $x \in \mathcal{Q}$ to its Grundy value!
In other words, multiplication by $b^{2}$ sends each $x \in \mathcal{Q}$ to its "normal-play residue" in $\mathcal{K}$.

If $x$ is already in $\mathcal{K}$, then $b^{2} \cdot x=x$, and the normal and misère outcomes coincide.

## Misère Nim (6)

Remember the strategy for misère Nim:
Play normal Nim until your move would leave only heaps of size 1 . Then play to leave an odd number of heaps of size 1 .

## Misère Nim (6)

Remember the strategy for misère Nim:
Play normal Nim until your move would leave only heaps of size 1 . Then play to leave an odd number of heaps of size 1 .

We can now rephrase this:
Play normal Nim until your move would leave a position outside of $\mathcal{K}$. Then pay attention to the fine structure of the misère quotient.

We now have the right framework for a generalization.

## Misère Guiles (3)

Let $(\mathcal{Q}, \mathcal{P})$ be the misère quotient of Guiles.
The idempotents of $\mathcal{Q}$ are $1, b^{2}, d^{2}, e^{2}, f^{2}$. Multiplying them gives

$$
z=1 \cdot b^{2} \cdot d^{2} \cdot e^{2} \cdot f^{2}=d^{2} .
$$

## Misère Guiles (3)

Let $(\mathcal{Q}, \mathcal{P})$ be the misère quotient of Guiles.
The idempotents of $\mathcal{Q}$ are $1, b^{2}, d^{2}, e^{2}, f^{2}$. Multiplying them gives

$$
z=1 \cdot b^{2} \cdot d^{2} \cdot e^{2} \cdot f^{2}=d^{2} .
$$

The kernel $\mathcal{K}$ is the mutual divisibility class of $d^{2}$ :

$$
\mathcal{K}=\left\{d^{2}, a d^{2}, b d^{2}, a b d^{2}\right\} .
$$

$\mathcal{K} \cong \mathbb{Z}_{2} \oplus \mathbb{Z}_{2}$.

## Misère Guiles (4)

|  | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 |
| ---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 0 | 1 | $a$ | $a$ | 1 | $a$ | $a$ | $b$ | $b$ | $a$ | $b$ |
| 10 | $b$ | $a$ | $a$ | 1 | $c$ | $c$ | $b$ | $b$ | $d$ | $b$ |
| 20 | $e$ | $c$ | $c$ | $f$ | $c$ | $c$ | $b$ | $g$ | $d$ | $h$ |
| 30 | $i$ | $a b^{2}$ | $a b g$ | $f$ | $a b g$ | $a b e$ | $b^{3}$ | $h$ | $d$ | $h$ |
| 40 | $h$ | $a b^{2}$ | $a b e$ | $f^{2}$ | $a b g$ | $a b g$ | $b^{3}$ | $h$ | $d$ | $h$ |
| 50 | $h$ | $a b^{2}$ | $a b g$ | $f^{2}$ | $a b g$ | $a b g$ | $b^{3}$ | $b^{3}$ | $d$ | $b^{3}$ |
| 60 | $b^{3}$ | $a b^{2}$ | $a b g$ | $f^{2}$ | $a b g$ | $a b g$ | $b^{3}$ | $b^{3}$ | $d$ | $b^{3}$ |
| 70 | $b^{3}$ | $a b^{2}$ | $a b^{2}$ | $f^{2}$ | $a b^{2}$ | $a b^{2}$ | $b^{3}$ | $b^{3}$ | $d$ | $b^{3}$ |
| 80 | $b^{3}$ | $a b^{2}$ | $a b^{2}$ | $f^{2}$ | $a b^{2}$ | $a b^{2}$ | $b^{3}$ | $b^{3}$ | $d$ | $b^{3}$ |
| 90 | $b^{3}$ | $a b^{2}$ | $a b^{2}$ | $f^{2}$ | $\cdots$ |  |  |  |  |  |

## Misère Guiles (4)

|  | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 |
| ---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 0 | $d^{2}$ | $a d^{2}$ | $a d^{2}$ | $d^{2}$ | $a d^{2}$ | $a d^{2}$ | $b d^{2}$ | $b d^{2}$ | $a d^{2}$ | $b d^{2}$ |
| 10 | $b d^{2}$ | $a d^{2}$ | $a d^{2}$ | $d^{2}$ | $a d^{2}$ | $a d^{2}$ | $b d^{2}$ | $b d^{2}$ | $a d^{2}$ | $b d^{2}$ |
| 20 | $b d^{2}$ | $a d^{2}$ | $a d^{2}$ | $d^{2}$ | $a d^{2}$ | $a d^{2}$ | $b d^{2}$ | $b d^{2}$ | $a d^{2}$ | $b d^{2}$ |
| 30 | $b d^{2}$ | $a d^{2}$ | $a d^{2}$ | $d^{2}$ | $a d^{2}$ | $a d^{2}$ | $b d^{2}$ | $b d^{2}$ | $a d^{2}$ | $b d^{2}$ |
| 40 | $b d^{2}$ | $a d^{2}$ | $a d^{2}$ | $d^{2}$ | $a d^{2}$ | $a d^{2}$ | $b d^{2}$ | $b d^{2}$ | $a d^{2}$ | $b d^{2}$ |
| 50 | $b d^{2}$ | $a d^{2}$ | $a d^{2}$ | $d^{2}$ | $a d^{2}$ | $a d^{2}$ | $b d^{2}$ | $b d^{2}$ | $a d^{2}$ | $b d^{2}$ |
| 60 | $b d^{2}$ | $a d^{2}$ | $a d^{2}$ | $d^{2}$ | $a d^{2}$ | $a d^{2}$ | $b d^{2}$ | $b d^{2}$ | $a d^{2}$ | $b d^{2}$ |
| 70 | $b d^{2}$ | $a d^{2}$ | $a d^{2}$ | $d^{2}$ | $a d^{2}$ | $a d^{2}$ | $b d^{2}$ | $b d^{2}$ | $a d^{2}$ | $b d^{2}$ |
| 80 | $b d^{2}$ | $a d^{2}$ | $a d^{2}$ | $d^{2}$ | $a d^{2}$ | $a d^{2}$ | $b d^{2}$ | $b d^{2}$ | $a d^{2}$ | $b d^{2}$ |
| 90 | $b d^{2}$ | $a d^{2}$ | $a d^{2}$ | $d^{2}$ | $\cdots$ |  |  |  |  |  |

Misère Guiles (4)

|  | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 |
| ---: | ---: | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 0 | 0 | 1 | 1 | 0 | 1 | 1 | 2 | 2 | 1 | 2 |
| 10 | 2 | 1 | 1 | 0 | 1 | 1 | 2 | 2 | 1 | 2 |
| 20 | 2 | 1 | 1 | 0 | 1 | 1 | 2 | 2 | 1 | 2 |
| 30 | 2 | 1 | 1 | 0 | 1 | 1 | 2 | 2 | 1 | 2 |
| 40 | 2 | 1 | 1 | 0 | 1 | 1 | 2 | 2 | 1 | 2 |
| 50 | 2 | 1 | 1 | 0 | 1 | 1 | 2 | 2 | 1 | 2 |
| 60 | 2 | 1 | 1 | 0 | 1 | 1 | 2 | 2 | 1 | 2 |
| 70 | 2 | 1 | 1 | 0 | 1 | 1 | 2 | 2 | 1 | 2 |
| 80 | 2 | 1 | 1 | 0 | 1 | 1 | 2 | 2 | 1 | 2 |
| 90 | 2 | 1 | 1 | 0 | $\cdots$ |  |  |  |  |  |

## Misère Guiles (5)

If we identify

$$
0 \sim d^{2}, * \sim a d^{2}, * 2 \sim b d^{2}, * 3 \sim a b d^{2}
$$

then we find $\mathcal{K} \cong\{0, *, * 2, * 3\}$ ! As with misère Nim, multiplication by $z=d^{2}$ maps the misère quotient onto its normal residue.

Now $d^{2} \in \mathcal{P}$, and $a d^{2}, b d^{2}, a b d^{2} \notin \mathcal{P}$. We conclude with a strategy for misère Guiles . . .

## Misère Guiles (5)

If we identify

$$
0 \sim d^{2}, * \sim a d^{2}, * 2 \sim b d^{2}, * 3 \sim a b d^{2}
$$

then we find $\mathcal{K} \cong\{0, *, * 2, * 3\}$ ! As with misère Nim, multiplication by $z=d^{2}$ maps the misère quotient onto its normal residue.

Now $d^{2} \in \mathcal{P}$, and $a d^{2}, b d^{2}, a b d^{2} \notin \mathcal{P}$. We conclude with a strategy for misère Guiles . . .

Play normal Guiles until your move would leave a position outside of $\mathcal{K}$. Then pay attention to the fine structure of the misère quotient.

## Other Games

This works for many, many, many games. If we are playing $\Gamma$ on some massive number of heaps, we can forget all about misère-play complexities so long as the position remains "rich enough" to stay inside of $\mathcal{K}$.

Only when the environment "thins out" do we need to start paying attention.

## Other Games

This works for many, many, many games. If we are playing $\Gamma$ on some massive number of heaps, we can forget all about misère-play complexities so long as the position remains "rich enough" to stay inside of $\mathcal{K}$.

Only when the environment "thins out" do we need to start paying attention.

A cautionary tale:

$$
\mathcal{Q}=\mathcal{Q}\left(\left(2_{+} 31\right)\left(2_{+} 2\right) 2_{+} 3\right)
$$

Here the identity of $\mathcal{K}$ is not a misère $\mathscr{P}$-position. So the normal and misère strategies do not coincide. However, it is still true that $\mathcal{K} \cong$ the normal quotient, as a group.

## The Normal Embedding Conjecture (1)

Conjecture: In any misère quotient, $\mathcal{K}$ is isomorphic to the normal quotient.

It's true under the following two assumptions:

- (faithfulness) If $\Phi(X)=\Phi(Y)$, then $X$ and $Y$ have the same Grundy value.
- (regularity) $\mathcal{K}$ contains just one $\mathscr{P}$-position.


## The Normal Embedding Conjecture (1)

Conjecture: In any misère quotient, $\mathcal{K}$ is isomorphic to the normal quotient.

It's true under the following two assumptions:

- (faithfulness) If $\Phi(X)=\Phi(Y)$, then $X$ and $Y$ have the same Grundy value.
- (regularity) $\mathcal{K}$ contains just one $\mathscr{P}$-position.

So the Conjecture is equivalent to the question: does there exist a non-faithful or irregular quotient?

## The Normal Embedding Conjecture (2)

There is overwhelming experimental evidence for it . . . but little reason to believe.

The history of misère games is rife with such conjectures that later prove to be false.

## In Fact:

Old Conjecture: If $\mathcal{Q}$ is finite, then every element of $\mathcal{Q}$ has period 1 or 2. (The period of $x$ is the least $k$ for which $x^{n+k}=x^{n}$, for some $n$.)

Based on new evidence, we've been forced to revise this slightly.

## In Fact:

Old Conjecture: If $\mathcal{Q}$ is finite, then every element of $\mathcal{Q}$ has period 1 or 2 . (The period of $x$ is the least $k$ for which $x^{n+k}=x^{n}$, for some $n$.)

Based on new evidence, we've been forced to revise this slightly.

New Conjecture: For every $k \geq 1$, there exists a quotient $\mathcal{Q}$ and an element $x \in \mathcal{Q}$ of period $k$.

## In Fact:

Old Conjecture: If $\mathcal{Q}$ is finite, then every element of $\mathcal{Q}$ has period 1 or 2 . (The period of $x$ is the least $k$ for which $x^{n+k}=x^{n}$, for some $n$.)

Based on new evidence, we've been forced to revise this slightly.

New Conjecture: For every $k \geq 1$, there exists a quotient $\mathcal{Q}$ and an element $x \in \mathcal{Q}$ of period $k$.

$$
\mathcal{Q}\left(\left(2_{+} 30\right)\left(2_{+} 210\right) 3_{+} 21\right)
$$

has an element $x \neq 1$ satisfying $x^{3}=1$.

## The Misère Mex Mystery

We are given $\mathcal{Q}(\mathscr{A})$, together with some game $G$ whose options are in $\mathscr{A}$.

We compute $\Phi\left(G^{\prime}\right)$ for each such option $G^{\prime}$. How can we predict $\Phi(G)$ ?

## The Misère Mex Mystery

We are given $\mathcal{Q}(\mathscr{A})$, together with some game $G$ whose options are in $\mathscr{A}$.

We compute $\Phi\left(G^{\prime}\right)$ for each such option $G^{\prime}$. How can we predict $\Phi(G)$ ?

In normal play it's just the Grundy mex.
In misère play, we need more information.

## Transition Algebras (1)

Let $x=\Phi(G)$ and consider

$$
\mathcal{E}=\Phi^{\prime \prime} G=\left\{\Phi\left(G^{\prime}\right): G^{\prime} \text { is an option of } G\right\} .
$$

We consider the pair $(x, \mathcal{E})$. Define $\Psi(G)=(x, \mathcal{E})$.

## Transition Algebras (1)

Let $x=\Phi(G)$ and consider

$$
\mathcal{E}=\Phi^{\prime \prime} G=\left\{\Phi\left(G^{\prime}\right): G^{\prime} \text { is an option of } G\right\} .
$$

We consider the pair $(x, \mathcal{E})$. Define $\Psi(G)=(x, \mathcal{E})$.
The misère quotient is given by

$$
\mathcal{Q}(\mathscr{A})=\{\Phi(G): G \in \mathscr{A}\} .
$$

The transition algebra is given by

$$
T(\mathscr{A})=\left\{\left(\Phi(G), \Phi^{\prime \prime} G\right): G \in \mathscr{A}\right\}=\{\Psi(G): G \in \mathscr{A}\} .
$$

## Transition Algebras (2)

There is a natural multiplicative structure on $T(\mathscr{A})$.

$$
(x, \mathcal{E}) \cdot(y, \mathcal{F})=(x y, x \mathcal{F} \cup y \mathcal{E}) .
$$

We are essentially rephasing the definition of + .

## Transition Algebras (2)

There is a natural multiplicative structure on $T(\mathscr{A})$.

$$
(x, \mathcal{E}) \cdot(y, \mathcal{F})=(x y, x \mathcal{F} \cup y \mathcal{E}) .
$$

We are essentially rephasing the definition of + .

$$
\Psi(G+H)=\Psi(G)+\Psi(H) .
$$

So $T(\mathscr{A})$ is another monoid, and the following diagram commutes:


## Transition Algebras (3)

Given a game $G$ with each option $G^{\prime} \in \mathscr{A}$, let $\mathscr{B}$ be the closure of $\mathscr{A} \cup\{G\}$.

Given $T(\mathscr{A})$, we can instantly determine whether $\mathcal{Q}(\mathscr{B})=\mathcal{Q}(\mathscr{A})$. If it does, we can instantly compute the value of $\Phi(G)$.

## Transition Algebras (3)

Given a game $G$ with each option $G^{\prime} \in \mathscr{A}$, let $\mathscr{B}$ be the closure of $\mathscr{A} \cup\{G\}$.

Given $T(\mathscr{A})$, we can instantly determine whether $\mathcal{Q}(\mathscr{B})=\mathcal{Q}(\mathscr{A})$. If it does, we can instantly compute the value of $\Phi(G)$.

In other words, $T(\mathscr{A})$ determines the mex behavior for $\mathcal{Q}(\mathscr{A})$.

## Transition Algebras (3)

Given a game $G$ with each option $G^{\prime} \in \mathscr{A}$, let $\mathscr{B}$ be the closure of $\mathscr{A} \cup\{G\}$.

Given $T(\mathscr{A})$, we can instantly determine whether $\mathcal{Q}(\mathscr{B})=\mathcal{Q}(\mathscr{A})$. If it does, we can instantly compute the value of $\Phi(G)$.

In other words, $T(\mathscr{A})$ determines the mex behavior for $\mathcal{Q}(\mathscr{A})$.

The Normal Embedding Conjecture states that on the kernel $\mathcal{K}<\mathcal{Q}$, the normal and misère mex functions coincide. So if it's true, we can prove it (in theory) just by looking at transition algebras.

## Transition Algebras (4)

Transition algebras also answer the following question. Given a monoid $\mathcal{Q}$ and a subset $\mathcal{P} \subset \mathcal{Q}$, is $(\mathcal{Q}, \mathcal{P})$ isomorphic to the misère quotient of some set $\mathscr{A}$ ?

But this is the subject of another talk.

