Details Page for 0.0064

Complete Solution is Known:

Period:  
Preperiod:  
Quotient Size:   3200
P-Portion Size:   296
Tame?   No

MSV File: q-0.0064.msv

Growth Pattern:

Heap   Q-Size   P-Size
421
762
13102
17285
26448
296211
3015020
3121627
3225633
332148205
343200296

(Click on a heap to see details)

Details for Q34(0.0064):

Q = <a,b,c,d,e,f,g,h,i,j,k | a2=1, b3=b, b2c3=c3, c5=c3, b2cd=cd, c3d=ac4, c2d3=c2d, d4=d2, be=ab, c3e=ac3, cde=acd, e2=b2, b2cf=cf, c3f=ac4, b2df=df, ef=ab2f, b2f2=f2, c2f2=c4, d2f2=acd2f, cf3=ac4, f4=c4, b2g=g, c3g=c4, eg=ag, c2g2=b2c2, d2g2=b2d2, cg3=cg, dg3=dg, fg3=fg, g4=g2, b2ch=ch, c3h=c4, b2dh=dh, ceh=ach, deh=adh, g3h=gh, c2dh2=c2d, d2h2=b2d2, dgh2=dg, f3gh2=f3g, c2h3=c2h, cgh3=cgh, f2gh3=f2gh, cdh4=cdh2, f3h4=f3h2, gh4=gh2, ch5=ch3, dh5=dh3, h6=h4, b2ci=ci, c2i=c2h, di=dh, cei=aci, fi=fh, g3i=gi, cgh2i=cgi, gh3i=ghi, ch4i=ch2i, h5i=h3i, i2=hi, b2j=j, ej=aj, c2d2hj=c2hj, c2h2j=c2d2j, cij=chj, c2dj2=ac3j2, cd3j2=cdj2, cdf2j2=ac4j2, f3j2=ac3j2, g2j2=j2, c2hj2=c3j2, dh2j2=dj2, ch3j2=chj2, f2h3j2=f2hj2, h4j2=h2j2, ij2=hj2, c2j3=j3, dj3=acj3, fj3=acj3, gj3=cj3, hj3=cj3, j4=bj3, b2ck=ck, b2dk=dk, c2d2k=c2k, d3k=dk, ek=ab2k, df2k=acdfk, dg2k=dk, f3g2k=f3k, g3k=gk, c2h2k=c2k, dh2k=dk, f3h2k=f3k, gh2k=gk, ch4k=ch2k, h5k=h3k, ik=hk, c4j2k=c2j2k, cd2j2k=cj2k, c2fj2k=ac3j2k, cf2j2k=c3j2k, c2gj2k=c3j2k, h2j2k=j2k, j3k=bj3, k2=b2d2>

P = {a, b2, c2, b2c2, c4, ad, bcd, ad2, b2d2, c2d2, ad3, bcd3, ce, af, bcf, abdf, c2df, acd2f, abd3f, f2, acdf2, df3, bcg, dg, ac2dg, bcd2g, d3g, bcfg, abd2fg, ac2d2fg, af3g, g2, bcdg2, bcfg2, abdfg2, f2g2, acdf2g2, df3g2, h, bch, dh, ac2dh, bcd2h, d3h, ac2fh, abd2fh, ac2d2fh, cf2h, af3h, gh, c2gh, bcdgh, d2gh, c2d2gh, bcd3gh, abdfgh, c2dfgh, acd2fgh, abd3fgh, f2gh, acdf2gh, df3gh, bcg2h, dg2h, cf2g2h, af3g2h, ah2, b2h2, c2h2, bcdh2, afh2, bcfh2, abdfh2, f2h2, acdf2h2, df3h2, bcgh2, bcfgh2, g2h2, bcfg2h2, f2g2h2, h3, bch3, dh3, cf2h3, af3h3, gh3, ah4, b2h4, afh4, bcfh4, abdfh4, f2h4, h5, i, abci, gi, abcg2i, ahi, b2hi, bcghi, g2hi, h2i, abch2i, gh2i, ah3i, b2h3i, h4i, abcj, abc3j, bdj, bc2dj, cd2j, bd3j, bfj, ac2fj, cdfj, ad2fj, bc2d2fj, cd3fj, bf2j, bf3j, abc2gj, bd2gj, abc2d2gj, bfgj, cdfgj, cd3fgj, bf2gj, abdf3gj, cg2j, bdg2j, bfg2j, cdfg2j, bf2g2j, bf3g2j, bg3j, abc2hj, bd2hj, acfhj, abc2dfhj, adf2hj, cghj, bdghj, bc2dghj, cd2ghj, bd3ghj, bc2fghj, ad2fghj, abcf2ghj, adf2ghj, bf3ghj, bg2hj, acfg2hj, adf2g2hj, ch2j, bdh2j, bfh2j, cdfh2j, cf2h2j, bf3h2j, bgh2j, cg2h2j, afg2h2j, cf2g2h2j, bh3j, acfh3j, abf2h3j, bcdf2h3j, abdf3h3j, afgh3j, bg2h3j, ch4j, bdh4j, bfh4j, abcf2h4j, adf2h4j, bh5j, bghij, j2, c2j2, c4j2, acdj2, d2j2, acfj2, dfj2, acd2fj2, d3fj2, f2j2, cf2gj2, adf2gj2, afhj2, cdfhj2, cf2hj2, ghj2, acdghj2, d2ghj2, dfghj2, acd2fghj2, d3fghj2, f2ghj2, h2j2, acfh2j2, f2h2j2, gh3j2, bj3, ck, abc3k, bdk, bc2dk, cd2k, ab2fk, bc2fk, abcdfk, ad2fk, abcf2k, bf3k, bgk, abc2gk, cdgk, bd2gk, adfgk, abc2dfgk, cg2k, afg2k, abcf2g2k, bhk, abc2hk, cdhk, bd2hk, adfhk, abc2dfhk, cghk, bdghk, bc2dghk, cd2ghk, afghk, bc2fghk, abcdfghk, ad2fghk, abcf2ghk, bf3ghk, bg2hk, ch2k, ab2fh2k, abcf2h2k, bh3k, ab2fh4k, jk, c2jk, c4jk, bcdjk, d2jk, bcfjk, abdfjk, c2dfjk, bcd2fjk, f2jk, dgjk, ac2dgjk, bcfgjk, bcd2fgjk, af3gjk, g2jk, bcfg2jk, f2g2jk, dhjk, ac2dhjk, ac2fhjk, af3hjk, ghjk, c2ghjk, bcdghjk, d2ghjk, abdfghjk, c2dfghjk, abf2ghjk, h2jk, bcfh2jk, f2h2jk, cf2h3jk, h4jk, abf2h4jk, abcj2k, abc3j2k, bdj2k, bfj2k, abcdfj2k, bd2fj2k, abf2gj2k, bcfhj2k, abcghj2k, bdghj2k, bfghj2k, abcdfghj2k, bd2fghj2k}

Phi = 1 1 1 1 a a a b b b ab ab ab c a a a d d d ab ab ab b b b e ab2 ab2 f g h i j k

Monoid Structure

Idempotent  |G|  |Arch|
122
b246
c4161098
d246
b2d264152
g2812
g2h21624
h4410
b2h4830
g2hi1624
h3i410
b2h3i830
bj3 *81796