Details Page for 0.0224

Complete Solution is Known:

Period:  
Preperiod:  
Quotient Size:   880
P-Portion Size:   128
Tame?   No

MSV File: q-0.0224.msv

Growth Pattern:

Heap   Q-Size   P-Size
321
562
10102
17184
19367
2010017
2214423
2421630
2631643
2732445
2842061
29880128

(Click on a heap to see details)

Details for Q29(0.0224):

Q = <a,b,c,d,e,f,g,h,i,j,k,l,m,n | a2=1, b3=b, c5=c3, c4d=c2d, d2=b2c3d, b2e=e, c3e=ce, de=ce, c2e2=e2, e5=e4, bf=ab, ef=ae, f2=b2, c4g=c2g, c3dg=cdg, c2eg=eg, e3g=be4, c2g2=g2, bdg2=bce4, eg2=e4, b2g3=g3, dg3=bce4, fg3=ag3, g4=e4, c2h=c2d, dh=b2ch, eh=ce, cgh=cdg, g2h=dg2, h2=b2ch, b2i=i, c4i=c2i, di=ab2c3d, ei=ace, fi=ai, c3gi=cgi, hi=ab2ch, i2=b2c3d, b2j=j, cj=b2c2d, dj=b2c2d, e2j=e2, fj=aj, gj=b2cdg, hj=b2c2d, ij=ab2c2d, ej2=c2e, j3=b2c3d, b2k=k, e4k=abe4, fk=ak, gk=abg, k2=b2, b2l=l, cl=ab2c2d, dl=ab2c2d, e2l=ae2, fl=al, gl=ab2cdg, hl=ab2c2d, il=b2c2d, ejl=ac2e, j2l=ab2c3d, l2=b2c3d, c2m=c2g, bdm=bc2dg, em=eg, gm=g2, bhm=bgh, chm=cdm, jm=b2cdg, km=abm, lm=ab2cdg, hm2=dm2, b2m3=m3, dm3=bce4, fm3=am3, m4=e4, b2c2n=c2n, b2dn=dn, e4n=be4, fn=ab2n, b2cgn=cgn, b2g2n=g2n, dg2n=bce4, chn=cdn, ghn=dgn, b2mn=mn, cmn=cgn, dmn=c2dgn, hmn=dgn, imn=c2gin, m2n=g2n, b2n2=n2, cn2=b2c2d, dn2=b2c2d, e2n2=e2, gn2=b2cdg, hn2=b2c2d, in2=ab2c2d, eln2=ac2e, jln2=ab2c3d, mn2=b2cdg, en3=c2en, j2n3=c3dn, ln3=ac3dn, n4=b2c3d>

P = {a, b2, c2, b2c2, c4, b2c4, cd, b2cd, c3d, b2c3d, be, c2e, e2, e3, e4, acf, ac3f, acg, ab2cg, ac3g, ab2c3g, adg, ab2dg, ac2dg, ab2c2dg, aceg, be2g, fg, c2fg, g2, b2g2, cdg2, acfg2, bg3, h, bch, afh, abgh, abci, abc3i, bgi, bc2gi, abcg2i, bj, ej, j2, bk, abc2k, abc4k, abcdk, abc3dk, ek, abc2ek, ce2k, abe3k, achk, cik, c3ik, jk, abl, ael, ajl, akl, acm, ab2cm, adm, dfm, im, m2, b2m2, cdm2, afm2, acdfm2, acim2, bm3, abcim3, b2n, cn, bc2n, c4n, bcdn, c3dn, ben, c2en, be2n, be3n, agn, abcgn, ac3gn, abdgn, ac2dgn, acegn, bg2n, g3n, hn, abcin, ac3in, bgin, c2gin, acg2in, bjn, ejn, j2n, bkn, ac2kn, abc4kn, acdkn, abc3dkn, abc2ekn, ce2kn, cikn, bc3ikn, jkn, abln, aeln, ajln, akln, n2, en2, bjn2, ejn2, j2n2, abekn2, jkn2, abln2, n3, bjn3, abkn3}

Phi = 1 1 1 a a b b ab ab 1 c a a 1 d ab ab e d f g 1 h a i j k l m n

Monoid Structure

Idempotent  |G|  |Arch|
122
b2810
c448
b2c41640
b2c3d32334
e4 *8486