Details Page for 0.1116

Complete Solution is Known:

Period:  
Preperiod:  
Quotient Size:   1286
P-Portion Size:   171
Tame?   No

MSV File: q-0.1116.msv

Growth Pattern:

Heap   Q-Size   P-Size
121
662
16123
18285
23407
25488
265210
281286171

(Click on a heap to see details)

Details for Q28(0.1116):

Q = <a,b,c,d,e,f,g,h,i | a2=1, b3=b, b2c3=c3, c4=bc3, b2c2d=c2d, c3d=bc2d, b2cd2=cd2, c2d2=bc3, bd3=bd, cd3=b2cd, d4=d2, c2e=c3, b2de=de, cde=c2d, d3e=de, e2=bcd2, c3f=bc2d, b2cdf=cdf, c2df=bc3, d3f=df, cef=c2f, f3=b2df2, c3g=ac3, bdg=abd, c2dg=ac2d, cd2g=acd2, deg=ade, cdfg=acdf, cdg2=acdg, d2g2=b2d2, b2c2fg2=c2fg2, dfg2=b2df, b2efg2=efg2, b2f2g2=f2g2, dg3=adg2, g4=ag3, b2h=h, ch=abc, dh=abd, fh=abf, gh=abg, h2=abh, c3i=bc3, c2di=bc2d, cei2=c2i2, bdf2i2=bc2d, cdf2i2=bc2d, def2i2=bc2d, bci3=ab2cgi2, di3=bdi2, bfi3=ab2fgi2, bgi3=ab2g2i2, g2i3=abg3i2, hi3=b2gi2, b2i5=i5, ci5=abcg3i2, fi5=abfg3i2, gi5=bg3i2, i6=bi5>

P = {a, ab, ab2, c2, b2c2, bc3, cd, b2cd, d2, b2d2, abe, ce, b2ce, bd2e, cf, b2cf, df, b2df, cd2f, bdef, f2, b2f2, c2f2, b2c2f2, cdf2, d2f2, b2d2f2, bef2, bd2ef2, bg, ac2g, ab2c2g, acdg, ad2g, aceg, ab2ceg, acfg, ab2cfg, adfg, af2g, ab2f2g, ac2f2g, ab2c2f2g, ad2f2g, abef2g, abg2, c2g2, b2c2g2, ceg2, b2ceg2, cfg2, b2cfg2, f2g2, c2f2g2, bef2g2, bg3, ac2g3, ab2c2g3, aceg3, ab2ceg3, acfg3, ab2cfg3, af2g3, ac2f2g3, abef2g3, h, bh, ai, abi, ab2i, bc2i, aei, abei, ab2ei, d2ei, defi, bc2f2i, ef2i, b2ef2i, d2ef2i, gi, bgi, b2gi, abc2gi, begi, abc2f2gi, aef2gi, ab2ef2gi, ag2i, abg2i, ab2g2i, bc2g2i, abeg2i, bc2f2g2i, ef2g2i, g3i, bg3i, b2g3i, abc2g3i, beg3i, abc2f2g3i, aef2g3i, hi, bhi, ehi, behi, ai2, abi2, ab2i2, c2i2, b2c2i2, acdi2, ab2cdi2, d2i2, b2d2i2, abei2, bd2ei2, bdefi2, f2i2, b2f2i2, bcf2i2, c2f2i2, b2c2f2i2, d2f2i2, bef2i2, bgi2, cgi2, ab2c2gi2, ad2gi2, bfgi2, cfgi2, abcf2gi2, ac2f2gi2, ab2c2f2gi2, adf2gi2, abef2gi2, abg2i2, acg2i2, b2c2g2i2, abfg2i2, acfg2i2, abf2g2i2, c2f2g2i2, bg3i2, cg3i2, ab2c2g3i2, bfg3i2, cfg3i2, bf2g3i2, cf2g3i2, hi2, bhi2, ai3, ab2i3, aei3, ab2ei3, afi3, cf2i3, ef2i3, gi3, fgi3, acf2gi3, aef2gi3, abi4, c2i4, abei4, c2f2i4, ac2gi4, ac2f2gi4, ai5, aei5}

Phi = 1 a a a 1 1 bd bd a bd abd 1 bd a a a b b c bd abd d abd e f g h a i

Monoid Structure

Idempotent  |G|  |Arch|
122
b244
bc3 *81040
d246
b2d2816
b2d2f2876
ag326
ab2g3412
abh44
b2d2i2844
ab2g3i2448
bi5428