Details Page for 0.1124

Complete Solution is Known:

Period:  
Preperiod:  
Quotient Size:   1142
P-Portion Size:   159
Tame?   No

MSV File: q-0.1124.msv

Growth Pattern:

Heap   Q-Size   P-Size
121
862
13102
20366
22488
28528
29568
3015620
331142159

(Click on a heap to see details)

Details for Q33(0.1124):

Q = <a,b,c,d,e,f,g,h,i,j,k | a2=1, b5=b3, b2c4=b2c2, bc5=bc3, c6=c4, b2d=b3, bd3=bd, d4=d2, b2c3e=b2ce, bc4e=bc2e, c5e=c3e, bde=b4e, c3de=cde, b2e2=e2, c2e2=e2, de2=be2, e3=ae2, bc2f=abc2e, c5f=c3f, bdf=b4f, ef=ae2, f2=e2, bg=abf, c3g=ac3f, eg=e2, fg=ae2, g2=e2, bh=bc, c2h=c3, eh=ce, fh=cf, gh=acf, h2=ch, b4i=b2i, bc4i=bc2i, c5i=c3i, bdi=b2i, d3i=di, bc2ei=bei, c3ei=cei, cdei=b3cei, e2i=be2, c2fi=aei, gi=afi, hi=ci, i2=e2, b2j=b4, d2j=j, ej=d2e, fj=d2f, gj=d2g, bij=b3i, j2=j, b3k=ae2, b2c2k=b2k, c2d2ek=d2ek, e2k=abe2, bfk=abek, c2dgk=ac4dfk, bik=b2k, dik=bc2dk, c2eik=eik, fik=aeik, bjk=d3fk, ijk=c2d3fk, d2ek2=ad3ek, fk2=aek2, gk2=ek2, hk2=ck2, c3jk2=cjk2, jk3=adjk2, b2k5=b2k, ek5=ek, k6=k2>

P = {a, b2, b4, c2, b2c2, b4c2, c4, ad, bcd, ac3d, bc4d, ad2, c2d2, c4d2, ad3, ac3d3, abe, ab3e, ac2e, ab2c2e, ab4c2e, ac4e, ac2d2e, e2, bf, b3f, c2f, c4f, c2d2f, c4d2f, ac2g, cdg, ac2d2g, cd3g, ch, cd2h, bi, b3i, bc2i, b3c2i, cdi, c4di, cei, b2cei, adei, bcfi, b3cfi, dfi, aj, c2j, c4j, adj, bcdj, ac3dj, bc4dj, chj, cdij, c4dij, k, abck, c3k, abc4k, dk, ac2dk, ac4dk, d2k, abcd2k, c3d2k, abc4d2k, d3k, ac2d3k, ac4d3k, bek, bc2ek, cdek, cd3ek, acdfk, ac4dfk, acd3fk, ac4d3fk, acdhk, acd3hk, ac2ik, ac4ik, eik, jk, c3jk, djk, ac2djk, ac4djk, acdhjk, ak2, b2k2, c2k2, c4k2, adk2, bcdk2, bc3dk2, ad2k2, c2d2k2, c4d2k2, ad3k2, ab2ek2, acek2, ac3ek2, ajk2, c2jk2, adjk2, k3, abck3, ac3k3, abc4k3, dk3, ac3dk3, ac5dk3, d2k3, abcd2k3, ac3d2k3, abc4d2k3, d3k3, ac3d3k3, ac5d3k3, bek3, c2ek3, bc3ek3, c2dek3, ac2ik3, ac4ik3, ceik3, ak4, b2k4, c2k4, c4k4, adk4, bcdk4, bc3dk4, ad2k4, c2d2k4, c4d2k4, ad3k4, abek4, ab2cek4, ac2ek4, ac4ek4, k5, abck5, c3k5, abc4k5, dk5, ac2dk5, ac4dk5, d2k5, abcd2k5, abc3d2k5, d3k5, ac2d3k5, ac4d3k5, acik5, ac4ik5}

Phi = 1 a a 1 1 1 a a b 1 b ab a c b 1 ac a a 1 d 1 e ad b f b ab g h i j ah k

Monoid Structure

Idempotent  |G|  |Arch|
122
b4416
b4c2858
c4414
d246
c4d2842
e2 *8672
j44
c4j828
jk248
c2jk2836
k4810
c4k41654
d2k41630
c4d2k432162