Details Page for 0.1144

Complete Solution is Known:

Period:  
Preperiod:  
Quotient Size:   504
P-Portion Size:   118
Tame?   No

MSV File: q-0.1144.msv

Growth Pattern:

Heap   Q-Size   P-Size
121
762
13102
19122
27305
33428
41489
476413
557014
619019
699620
7512026
8312627
8915434
9716035
10319243
11119844
11723453
12524054
13128064
13928665
14533076
15333677
15938489
16739090
173442103
181448104
187504118

(Click on a heap to see details)

Details for Q173(0.1144):

Q = <a,b,c,d,e,f,g,h,i,j,k,l,m,n,o,p,q,r,s,t,u,v,w,x,y,z | a2=1, b3=b, b2c3=c3, c4=b2c2, bd=ab, cd=ac, d3=ad2, b2ce=ce, c2e=c3, d2e=ade, be2=bc2, ce2=c3, de2=ae2, e3=c3, bf=ab, c3f=ac3, df=af, ef=de, c2f2=e2, f3=af2, cg=ce, dg=ag, eg=ce, f2g=afg, bg2=bc2, fg2=ag2, g3=c3, bh=ab, c3h=ac3, dh=ah, ceh=ace, e2h=c2h, fh=ah, gh=fg, c2h2=g2, h3=ah2, ci=ce, di=ai, ei=ce, fi=ai, gi=ce, h2i=ahi, bi2=bc2, hi2=ai2, i3=c3, bj=ab, c3j=ac3, dj=aj, cej=ace, e2j=c2j, fj=aj, g2j=c2j, hj=aj, ij=hi, c2j2=i2, j3=aj2, ck=ce, dk=ak, ek=ce, fk=ak, gk=ce, hk=ak, ik=ce, j2k=ajk, bk2=bc2, jk2=ak2, k3=c3, bl=ab, c3l=ac3, dl=al, cel=ace, e2l=c2l, fl=al, g2l=c2l, hl=al, i2l=c2l, jl=al, kl=jk, c2l2=k2, l3=al2, cm=ce, dm=am, em=ce, fm=am, gm=ce, hm=am, im=ce, jm=am, km=ce, l2m=alm, bm2=bc2, lm2=am2, m3=c3, bn=ab, c3n=ac3, dn=an, cen=ace, e2n=c2n, fn=an, g2n=c2n, hn=an, i2n=c2n, jn=an, k2n=c2n, ln=an, mn=lm, c2n2=m2, n3=an2, co=ce, do=ao, eo=ce, fo=ao, go=ce, ho=ao, io=ce, jo=ao, ko=ce, lo=ao, mo=ce, n2o=ano, bo2=bc2, no2=ao2, o3=c3, bp=ab, c3p=ac3, dp=ap, cep=ace, e2p=c2p, fp=ap, g2p=c2p, hp=ap, i2p=c2p, jp=ap, k2p=c2p, lp=ap, m2p=c2p, np=ap, op=no, c2p2=o2, p3=ap2, cq=ce, dq=aq, eq=ce, fq=aq, gq=ce, hq=aq, iq=ce, jq=aq, kq=ce, lq=aq, mq=ce, nq=aq, oq=ce, p2q=apq, bq2=bc2, pq2=aq2, q3=c3, br=ab, c3r=ac3, dr=ar, cer=ace, e2r=c2r, fr=ar, g2r=c2r, hr=ar, i2r=c2r, jr=ar, k2r=c2r, lr=ar, m2r=c2r, nr=ar, o2r=c2r, pr=ar, qr=pq, c2r2=q2, r3=ar2, cs=ce, ds=as, es=ce, fs=as, gs=ce, hs=as, is=ce, js=as, ks=ce, ls=as, ms=ce, ns=as, os=ce, ps=as, qs=ce, r2s=ars, bs2=bc2, rs2=as2, s3=c3, bt=ab, c3t=ac3, dt=at, cet=ace, e2t=c2t, ft=at, g2t=c2t, ht=at, i2t=c2t, jt=at, k2t=c2t, lt=at, m2t=c2t, nt=at, o2t=c2t, pt=at, q2t=c2t, rt=at, st=rs, c2t2=s2, t3=at2, cu=ce, du=au, eu=ce, fu=au, gu=ce, hu=au, iu=ce, ju=au, ku=ce, lu=au, mu=ce, nu=au, ou=ce, pu=au, qu=ce, ru=au, su=ce, t2u=atu, bu2=bc2, tu2=au2, u3=c3, bv=ab, c3v=ac3, dv=av, cev=ace, e2v=c2v, fv=av, g2v=c2v, hv=av, i2v=c2v, jv=av, k2v=c2v, lv=av, m2v=c2v, nv=av, o2v=c2v, pv=av, q2v=c2v, rv=av, s2v=c2v, tv=av, uv=tu, c2v2=u2, v3=av2, cw=ce, dw=aw, ew=ce, fw=aw, gw=ce, hw=aw, iw=ce, jw=aw, kw=ce, lw=aw, mw=ce, nw=aw, ow=ce, pw=aw, qw=ce, rw=aw, sw=ce, tw=aw, uw=ce, v2w=avw, bw2=bc2, vw2=aw2, w3=c3, bx=ab, c3x=ac3, dx=ax, cex=ace, e2x=c2x, fx=ax, g2x=c2x, hx=ax, i2x=c2x, jx=ax, k2x=c2x, lx=ax, m2x=c2x, nx=ax, o2x=c2x, px=ax, q2x=c2x, rx=ax, s2x=c2x, tx=ax, u2x=c2x, vx=ax, wx=vw, c2x2=w2, x3=ax2, cy=ce, dy=ay, ey=ce, fy=ay, gy=ce, hy=ay, iy=ce, jy=ay, ky=ce, ly=ay, my=ce, ny=ay, oy=ce, py=ay, qy=ce, ry=ay, sy=ce, ty=ay, uy=ce, vy=ay, wy=ce, xy=ab2y, y2=b2c2, bz=ab, c3z=ac3, dz=az, cez=ace, e2z=c2z, fz=az, g2z=c2z, hz=az, i2z=c2z, jz=az, k2z=c2z, lz=az, m2z=c2z, nz=az, o2z=c2z, pz=az, q2z=c2z, rz=az, s2z=c2z, tz=az, u2z=c2z, vz=az, w2z=c2z, xz=az, yz=ab2y, z2=b2>

P = {a, b2, c2, b2c2, d2, ae, abce, e2, cf, f2, ag, g2, ch, eh, h2, ai, i2, cj, ej, gj, j2, ak, k2, cl, el, gl, il, l2, am, m2, cn, en, gn, in, kn, n2, ao, o2, cp, ep, gp, ip, kp, mp, p2, aq, q2, cr, er, gr, ir, kr, mr, or, r2, as, s2, ct, et, gt, it, kt, mt, ot, qt, t2, au, u2, cv, ev, gv, iv, kv, mv, ov, qv, sv, v2, aw, w2, cx, ex, gx, ix, kx, mx, ox, qx, sx, ux, x2, ay, cz, ez, gz, iz, kz, mz, oz, qz, sz, uz, wz}

Phi = 1 a a 1 1 a a b b b b b b c c a a ab2 ab2 d d b b b b b b e e ab2 ab2 ab2 ab2 f f b b b b b b g g ab2 ab2 ab2 ab2 h h b b b b b b i i ab2 ab2 ab2 ab2 j j b b b b b b k k ab2 ab2 ab2 ab2 l l b b b b b b m m ab2 ab2 ab2 ab2 n n b b b b b b o o ab2 ab2 ab2 ab2 p p b b b b b b q q ab2 ab2 ab2 ab2 r r b b b b b b s s ab2 ab2 ab2 ab2 t t b b b b b b u u ab2 ab2 ab2 ab2 v v b b b b b b w w ab2 ab2 ab2 ab2 x x b b b b b b y y ab2 ab2 ab2 ab2 z z b b b b b b

Monoid Structure

Idempotent  |G|  |Arch|
122
b246
b2c2 *8390
d224
f224
h224
j224
l224
n224
p224
r224
t224
v224
x224