Details Page for 0.1246

Complete Solution is Known:

Period:  
Preperiod:  
Quotient Size:   1314
P-Portion Size:   154
Tame?   No

MSV File: q-0.1246.msv

Growth Pattern:

Heap   Q-Size   P-Size
121
562
9102
14123
214410
226814
238416
2830043
2932445
3169094
3270898
33754108
371042135
381314154

(Click on a heap to see details)

Details for Q38(0.1246):

Q = <a,b,c,d,e,f,g,h,i,j,k,l,m,n,o | a2=1, b3=b, b2c=c, c2=b2, cd=ab2d, d3=d, b2e=e, de=bd, e3=be2, bdf=abd, f2=b2d2, b2g=g, dg=ab2d, e2g=beg, g2=b2d2, b2h=h, dh=abd, e2h=bce2, efh=bcef, egh=bceg, fgh=cefg, eh2=bceh, fh2=bcfh, gh2=beg, h3=bch2, b2i=i, dfi=adi, ehi=bcei, ghi=cegi, h2i=bchi, di2=b2d, ei4=ei2, gi4=begi2, hi4=bci4, i5=bchi3, b2j=j, dj=bd, ej=b2d2, cfj=afj, chj=ahj, fhj=b2d2, ghj=b2d2, h2j=abhj, cij=aij, gij=abd2i, hij=ad2i, i3j=bd2i, j2=b2d2, dk=df, e2k=abcegi2, b2fk=fk, gk=b2d2, ehk=bcek, h2k=bchk, ei2k=ek, cjk=ajk, fi2jk=fgj, k2=b2d2, cl=ab2l, dl=df, el=afgj, fl=b2d2, gl=b2d2, hl=fgj, i2l=ab2d2, jl=afgj, kl=b2d2, l2=b2d2, bdm=d2i, cem=aem, b2fm=fm, cfm=afm, dfm=abd2i, e2fm=befm, gm=abdi, chm=ahm, ehm=abem, fhm=aefm, h2m=abhm, im=bd, cjm=ajm, km=abdi, lm=abdi, m2=b2d2, b2n=n, dn=di, e2n=ben, egn=bgn, ehn=bcen, ghn=bcgn, h2n=bchn, i4n=bchi2n, jn=bd2i, ekn=abcgi2n, hkn=bckn, i2kn=kn, ln=ad2i, mn=bd, n2=b2d2, b2o=o, do=di, ego=bgo, ho=bco, e2i2o=abcei2n, gi2o=acgi2n, i4o=i2o, jo=bd2i, fi2ko=fko, lo=ad2i, mo=bd, no=b2d2, o2=b2d2>

P = {a, b2, ac, ad, ad2, b2d2, be, abce, e2, ace2, bf, bcf, ef, acef, be2f, abce2f, ag, cg, abeg, bceg, abcfg, abh, aeh, ceh, afh, cfh, bgh, h2, ach2, aefi, cefi, abe2fi, bce2fi, abfgi, bcfgi, efgi, acefgi, fhi, acfhi, i2, aci2, bei2, abcei2, e2i2, ace2i2, bfi2, abcfi2, agi2, cgi2, abegi2, bcegi2, abhi2, bchi2, abfi3, bcfi3, efi3, cefi3, be2fi3, bce2fi3, bfgi3, abcfgi3, aefgi3, acefgi3, fhi3, cfhi3, i4, aci4, bj, abgj, ahj, bi2j, abfi2j, abk, bck, bfk, abcfk, hk, achk, aeik, ceik, abfik, bcfik, efik, acefik, ahik, chik, fhik, acfhik, bfi2k, abcfi2k, abfi3k, bcfi3k, hi3k, chi3k, fi4k, acfi4k, abl, bil, am, ab2m, ad2m, abem, fm, befm, bhm, abjm, bfjm, hjm, in, acin, bein, abcein, afin, cfin, agin, cgin, fgin, acfgin, abhin, bchin, i3n, aci3n, bei3n, abcei3n, abefi3n, agi3n, cgi3n, fgi3n, abhi3n, bchi3n, abcfhi3n, aikn, cikn, fikn, acfikn, io, acio, beio, abceio, e2io, ace2io, agio, cgio, i3o, aci3o, bei3o, abcei3o, cfi3o, bcefi3o, aiko, ciko, fiko, acfiko, ci3ko}

Phi = 1 a 1 1 a bd bd abd abd b b ab a c d b2d abd bd bd abd e f g h b2d b2d ab2d abd i j bd k l m ab2d ab2d abd n o afgj abd2 bd2 bd2

Monoid Structure

Idempotent  |G|  |Arch|
122
b288
d244
b2d2 *161156
e2824
h2816
e2i21648
i41656