Details Page for 0.1277

Complete Solution is Known:

Period:  
Preperiod:  
Quotient Size:   1052
P-Portion Size:   147
Tame?   No

MSV File: q-0.1277.msv

Growth Pattern:

Heap   Q-Size   P-Size
121
362
7102
10285
11326
15568
1613223
1722039
1863698
201052147

(Click on a heap to see details)

Details for Q20(0.1277):

Q = <a,b,c,d,e,f,g,h,i,j,k | a2=1, b3=b, bc4=bc2, c6=c4, bd=ab, c2d=ac2, d2=ad, b2ce=ce, c2e=ab2c3, de=ab2e, be2=b, ce2=b2c, e3=e, bf=b2c, cf=bc2, df=abc, e2f=f, f2=b2c2, dg=ag, b2eg=eg, e2g=b2g, fg=bcg, bc2g2=bc2, bcg3=bcg, c2g3=c2g, ceg3=ceg, g4=g2, bh=ab, ceh=ace, fh=abc, egh=aeg, h2=b2, bc2i=abc2, c5i=c3i, di=ai, b2ei=ei, e2i=b2i, fi=bci, ehi=aei, bci2=bc, c2i2=ac2i, cei2=ce, i3=i, bc2j=abc2g, c5j=c3j, cdj=acj, bgj=bce, c4gj=c2gj, egj=b2c, c3g2j=cg2j, cg3j=c3gj, c4hj=c2hj, cgij=acgj, gi2j=gj, dj2=aj2, b2ej2=ej2, e2j2=b2j2, fj2=bcj2, c2gj2=b2c2g, g2j2=b2c2, ehj2=aej2, bcj3=bcj, cej3=cej, gj3=cej2, bj4=bj2, c2j4=c2j2, ej4=ej2, j5=j3, b2k=k, c2k=bc2, dk=ak, e2k=k, fk=bck, cg3k=cgk, hk=ak, ci2k=ck, gjk=cek, cj3k=cjk, j4k=j2k, ck2=bck, i2k2=k2, k3=bk2>

P = {a, b2, c2, b2c2, c4, ad, ae, bce, ae2, aef, cg, b2cg, beg, g2, b2g2, c2g2, c4g2, bceg2, cg3, beg3, ach, c3h, c5h, dh, acgh, c4gh, ag2h, ac2g2h, c5g2h, acg3h, ai, ab2i, ac2i, ac4i, bcei, cgi, b2cgi, begi, ag2i, ab2g2i, ac2g2i, ac4g2i, bceg2i, cg3i, beg3i, hi, c2hi, acghi, ac4ghi, g2hi, c2g2hi, acg3hi, i2, b2i2, cgi2, begi2, g2i2, b2g2i2, cg3i2, beg3i2, ahi2, acghi2, ag2hi2, acg3hi2, aj, bcj, ac4j, aej, b2ej, ae2j, afj, ac2gj, bcij, c4ij, eij, ac3hij, ei2j, j2, b2j2, c2j2, c4j2, bcej2, ahj2, ac2hj2, acghj2, aij2, ab2ij2, ac2ij2, ac4ij2, bceij2, hij2, i2j2, b2i2j2, ahi2j2, ej3, c4ij3, eij3, ac3hij3, ei2j3, j4, ahj4, aij4, hij4, i2j4, ahi2j4, abk, acek, bcgk, aegk, abg2k, aceg2k, aeg3k, abik, ceik, bcgik, aegik, abg2ik, ceg2ik, aeg3ik, aegi2k, aeg3i2k, cjk, abejk, cijk, abeijk, abei2jk, abj2k, acej2k, abij2k, ceij2k, abej3k, abeij3k, abei2j3k, k2, abegk2, g2k2, abeg3k2, aik2, abegik2, ag2ik2, abeg3ik2, aejk2, aeijk2, j2k2, aij2k2, aej3k2, aeij3k2}

Phi = 1 a 1 b b ab ab c a d e f b b be g h i j ab k

Monoid Structure

Idempotent  |G|  |Arch|
122
b2816
b2c2 *16356
c4412
ad22
e244
g246
b2g21630
c4g2822
ac4i410
ac4g2i824
i244
b2i21620
g2i2812
b2g2i23260
b2j21642
c4j2826
ac4ij2834
b2i2j23264
j4410
i2j4816
k21640
g2k232120
j2k232120