Details Page for 0.1422

Complete Solution is Known:

Period:  
Preperiod:  
Quotient Size:   1324
P-Portion Size:   128
Tame?   No

MSV File: q-0.1422.msv

Growth Pattern:

Heap   Q-Size   P-Size
121
462
13123
23325
268812
2812818
2914423
3018026
3219227
3347249
3453655
3554457
3684483
371080104
381268123
391276123
401324128

(Click on a heap to see details)

Details for Q36(0.1422):

Q = <a,b,c,d,e,f,g,h,i,j,k,l,m,n,o,p,q,r,s,t,u,v | a2=1, b5=b3, bc=b4, c2=b4, d2=1, e=bd, b2f=ab3, cf=ab4, f2=b4, b2g=b3, cg=b4, fg=bf, g2=b4, b2h=ab3, ch=ab4, fh=b4, gh=abg, h2=abh, i=b2, bj=ab3, cj=ab3, fj=b3, gj=ab3, hj=b3, j2=b4, b2k=b3d, bfk=ab3d, gk=b4d, bhk=ab3d, jk=ab3d, bk3=bk, ck3=ck, fk3=fk, hk3=hk, k4=k2, l=b3, b3m=b3d, cm=b3d, bhm=abgm, jm=abgm, km=bk2, m2=b4, bn=b3, cn=b3, fn=ab3, gn=b3, hn=ab3, jn=ab4, kn=b3d, mn=bgm, n2=b4, b2o=bh, bfo=b4, bgo=abg, ho=ah, jo=n, cko=hk, bmo=hm, fmo=b3d, no=bh, bo2=abo, co2=aco, fo2=afo, go2=ago, ko2=ako, o3=ao2, bp=ab3, cp=ab3, fp=b3, gp=ab3, hp=b3, jp=b4, kp=ab3d, np=ab4, op=abf, p2=b4, b3q=ab3d, cq=ab3d, fq=b3d, bhq=abgq, jq=abgq, bkq=ab4, hkq=b4, k3q=kq, mq=ab4, nq=bgq, boq=hq, koq=fk2o, o2q=aoq, pq=abfm, q2=b4, b2r=ab3, cr=ab4, fr=b4, gr=br, hr=b4, jr=b3, kr=ab4d, mr=ab3d, nr=ab3, or=b3, pr=b3, qr=afm, r2=b4, bs2=b, cs2=c, gs2=g, hs2=h, js2=j, ks2=k, ms2=m, ns2=n, ps2=p, qs2=q, rs2=r, s3=s, b2t=b4d, ct=bt, ft=abt, gt=b3d, ht=ab3d, jt=ab4d, k2t=t, mt=bkt, nt=b4d, ot=hk, pt=ab4d, qt=ab4, rt=ab3d, s2t=t, t2=b4, bu=b3, cu=b3, fu=ab3, gu=b3, hu=ab3, ju=ab4, ku=b3d, mu=b4d, nu=b4, ou=ab4, pu=ab4, qu=bfm, ru=ab3, s2u=u, tu=b4d, u2=b4, b2v=b3d, bfv=ab3d, gv=abdf, bhv=ab3d, jv=ab3d, fkv=fk2, bmv=abdfm, fmv=ab4, hmv=ab4, nv=b3d, bov=abgm, mov=ab3, o2v=aov, pv=ab3d, qv=kq, rv=ab4d, fsv=fks, btv=bkt, uv=b3d, bv2=bkv, fv2=fk2, hv2=ab3, k2v2=v2, mv2=bk2v, cov2=ab3, s2v2=v2, ov3=kov2, tv3=ktv2, v4=v2>

P = {a, b2, b4, ad, abf, bg, abh, aj, adk, acdk, dhk, ak2, adk2, adk3, bdm, adfm, abdgm, n, o, do, bdko, k2o, dk2o, dmo, ao2, ado2, admo2, ap, dmp, adq, ab2dq, adk2q, abr, abds, acds, dfs, bdgs, bdhs, adjs, aks, abdk2s, acdk2s, dfk2s, dhk2s, ak3s, dos, dk2os, adfk2os, k3os, ado2s, dps, bdrs, as2, ads2, os2, dos2, ao2s2, ado2s2, akt, abst, adkst, u, dsu, adv, dhv, adk2v, mv, acdov, dfov, akov, abdksv, admsv, dkosv, dk3osv, ads2v, atv, adstv, v2, cdkv2, aov2, dosv2, adkstv2, adv3}

Phi = 1 a 1 1 b b b a a b2 ab ab c d ab2 b4 bd f g h bf b2 j k ah b3 m n o p q bo r s t u v

Monoid Structure

Idempotent  |G|  |Arch|
144
b4 *16640
k21624
ak2o1624
o248
s288
o2s2816
v23268
aov21652