Details Page for 0.1534

Complete Solution is Known:

Period:  
Preperiod:  
Quotient Size:   430
P-Portion Size:   107
Tame?   No

MSV File: q-0.1534.msv

Growth Pattern:

Heap   Q-Size   P-Size
121
462
1382
23123
26184
29225
32286
35348
38429
415012
446013
477017
508218
539423
5610824
5912230
6213831
6515438
6817239
7119047
7421048
7723057
8025258
8327468
8629869
8932280
9234881
9537493
9840294
101430107

(Click on a heap to see details)

Details for Q101(0.1534):

Q = <a,b,c,d,e,f,g,h,i,j,k,l,m,n,o,p,q,r,s,t,u,v,w,x,y,z,A,B | a2=1, b30=b28, bc=ab3, c2=b4, bd=ab5, cd=b6, d2=b8, b2e=b7, ce=ab7, de=ab9, e2=b10, b3f=ab9, cf=ab2f, df=b10, ef=ab11, f2=b12, b4g=b11, cg=ab2g, dg=ab11, eg=b12, fg=ab13, g2=b14, b5h=ab13, ch=ab2h, dh=ab4h, eh=ab13, fh=b14, gh=ab15, h2=b16, b6i=b15, ci=ab2i, di=ab4i, ei=b5i, fi=ab15, gi=b16, hi=ab17, i2=b18, b7j=ab17, cj=ab2j, dj=ab4j, ej=b5j, fj=ab6j, gj=ab17, hj=b18, ij=ab19, j2=b20, b8k=b19, ck=ab2k, dk=ab4k, ek=b5k, fk=ab6k, gk=b7k, hk=ab19, ik=b20, jk=ab21, k2=b22, b9l=ab21, cl=ab2l, dl=ab4l, el=b5l, fl=ab6l, gl=b7l, hl=ab8l, il=ab21, jl=b22, kl=ab23, l2=b24, b10m=b23, cm=ab2m, dm=ab4m, em=b5m, fm=ab6m, gm=b7m, hm=ab8m, im=b9m, jm=ab23, km=b24, lm=ab25, m2=b26, b11n=ab25, cn=ab2n, dn=ab4n, en=b5n, fn=ab6n, gn=b7n, hn=ab8n, in=b9n, jn=ab10n, kn=ab25, ln=b26, mn=ab27, n2=b28, b12o=b27, co=ab2o, do=ab4o, eo=b5o, fo=ab6o, go=b7o, ho=ab8o, io=b9o, jo=ab10o, ko=b11o, lo=ab27, mo=b28, no=ab29, o2=b28, b13p=ab29, cp=ab2p, dp=ab4p, ep=b5p, fp=ab6p, gp=b7p, hp=ab8p, ip=b9p, jp=ab10p, kp=b11p, lp=ab12p, mp=ab29, np=b28, op=ab29, p2=b28, b13q=ab12p, cq=ab2q, dq=ab4q, eq=b5q, fq=ab6q, gq=b7q, hq=ab8q, iq=b9q, jq=ab10q, kq=b11q, lq=ab12q, mq=ab12p, nq=ab29, oq=b28, pq=ab29, q2=b28, b12r=ab11q, cr=ab2r, dr=ab4r, er=b5r, fr=ab6r, gr=b7r, hr=ab8r, ir=b9r, jr=ab10r, kr=b11r, lr=b11q, mr=ab12q, nr=ab12p, or=ab29, pr=b28, qr=ab29, r2=b28, b11s=ab10r, cs=ab2s, ds=ab4s, es=b5s, fs=ab6s, gs=b7s, hs=ab8s, is=b9s, js=ab10s, ks=ab10r, ls=b11r, ms=b11q, ns=ab12q, os=ab12p, ps=ab29, qs=b28, rs=ab29, s2=b28, b10t=ab9s, ct=ab2t, dt=ab4t, et=b5t, ft=ab6t, gt=b7t, ht=ab8t, it=b9t, jt=b9s, kt=ab10s, lt=ab10r, mt=b11r, nt=b11q, ot=ab12q, pt=ab12p, qt=ab29, rt=b28, st=ab29, t2=b28, b9u=ab8t, cu=ab2u, du=ab4u, eu=b5u, fu=ab6u, gu=b7u, hu=ab8u, iu=ab8t, ju=b9t, ku=b9s, lu=ab10s, mu=ab10r, nu=b11r, ou=b11q, pu=ab12q, qu=ab12p, ru=ab29, su=b28, tu=ab29, u2=b28, b8v=ab7u, cv=ab2v, dv=ab4v, ev=b5v, fv=ab6v, gv=b7v, hv=b7u, iv=ab8u, jv=ab8t, kv=b9t, lv=b9s, mv=ab10s, nv=ab10r, ov=b11r, pv=b11q, qv=ab12q, rv=ab12p, sv=ab29, tv=b28, uv=ab29, v2=b28, b7w=ab6v, cw=ab2w, dw=ab4w, ew=b5w, fw=ab6w, gw=ab6v, hw=b7v, iw=b7u, jw=ab8u, kw=ab8t, lw=b9t, mw=b9s, nw=ab10s, ow=ab10r, pw=b11r, qw=b11q, rw=ab12q, sw=ab12p, tw=ab29, uw=b28, vw=ab29, w2=b28, b6x=ab5w, cx=ab2x, dx=ab4x, ex=b5x, fx=b5w, gx=ab6w, hx=ab6v, ix=b7v, jx=b7u, kx=ab8u, lx=ab8t, mx=b9t, nx=b9s, ox=ab10s, px=ab10r, qx=b11r, rx=b11q, sx=ab12q, tx=ab12p, ux=ab29, vx=b28, wx=ab29, x2=b28, b5y=ab4x, cy=ab2y, dy=ab4y, ey=ab4x, fy=b5x, gy=b5w, hy=ab6w, iy=ab6v, jy=b7v, ky=b7u, ly=ab8u, my=ab8t, ny=b9t, oy=b9s, py=ab10s, qy=ab10r, ry=b11r, sy=b11q, ty=ab12q, uy=ab12p, vy=ab29, wy=b28, xy=ab29, y2=b28, b4z=ab3y, cz=ab2z, dz=b3y, ez=ab4y, fz=ab4x, gz=b5x, hz=b5w, iz=ab6w, jz=ab6v, kz=b7v, lz=b7u, mz=ab8u, nz=ab8t, oz=b9t, pz=b9s, qz=ab10s, rz=ab10r, sz=b11r, tz=b11q, uz=ab12q, vz=ab12p, wz=ab29, xz=b28, yz=ab29, z2=b28, b3A=ab2z, cA=ab2A, dA=b3z, eA=b3y, fA=ab4y, gA=ab4x, hA=b5x, iA=b5w, jA=ab6w, kA=ab6v, lA=b7v, mA=b7u, nA=ab8u, oA=ab8t, pA=b9t, qA=b9s, rA=ab10s, sA=ab10r, tA=b11r, uA=b11q, vA=ab12q, wA=ab12p, xA=ab29, yA=b28, zA=ab29, A2=b28, b5B=bA, cB=ab2B, dB=ab4B, eB=bA, fB=ab2A, gB=ab2z, hB=b3z, iB=b3y, jB=ab4y, kB=ab4x, lB=b5x, mB=b5w, nB=ab6w, oB=ab6v, pB=b7v, qB=b7u, rB=ab8u, sB=ab8t, tB=b9t, uB=b9s, vB=ab10s, wB=ab10r, xB=b11r, yB=b11q, zB=ab12q, AB=ab12p, B2=b28>

P = {a, b2, b4, b6, b8, b10, b12, b14, b16, b18, b20, b22, b24, b26, b28, ae, bf, ag, ab2g, bh, b3h, ai, ab2i, ab4i, bj, b3j, b5j, ak, ab2k, ab4k, ab6k, bl, b3l, b5l, b7l, am, ab2m, ab4m, ab6m, ab8m, bn, b3n, b5n, b7n, b9n, ao, ab2o, ab4o, ab6o, ab8o, ab10o, bp, b3p, b5p, b7p, b9p, b11p, aq, ab2q, ab4q, ab6q, ab8q, ab10q, ab12q, br, b3r, b5r, b7r, b9r, b11r, as, ab2s, ab4s, ab6s, ab8s, ab10s, bt, b3t, b5t, b7t, b9t, au, ab2u, ab4u, ab6u, ab8u, bv, b3v, b5v, b7v, aw, ab2w, ab4w, ab6w, bx, b3x, b5x, ay, ab2y, ab4y, bz, b3z, aA, ab2A, aB, ab2B, ab4B}

Phi = 1 a a a b b b a a a b b b c c c b3 b3 b3 d d d b5 e e ab6 f f b7 g g ab8 h h b9 i i ab10 j j b11 k k ab12 l l b13 m m ab14 n n b15 o o ab16 p p b17 q q ab18 r r b19 s s ab20 t t b21 u u ab22 v v b23 w w ab24 x x b25 y y ab26 z z b27 A A ab28 ab3B ab3B b29 b2B b2B ab28 abB abB b29 B B ab28

Monoid Structure

Idempotent  |G|  |Arch|
122
b28 *4428