Details Page for 0.1557

Complete Solution is Known:

Period:  
Preperiod:  
Quotient Size:   374
P-Portion Size:   93
Tame?   No

MSV File: q-0.1557.msv

Growth Pattern:

Heap   Q-Size   P-Size
121
562
1282
29123
33184
37225
41286
45348
49429
535012
576013
617017
658218
699423
7310824
7712230
8113831
8515438
8917239
9319047
9721048
10123057
10525258
10927468
11329869
11732280
12134881
12537493

(Click on a heap to see details)

Details for Q121(0.1557):

Q = <a,b,c,d,e,f,g,h,i,j,k,l,m,n,o,p,q,r,s,t,u,v,w,x,y,z | a2=1, b27=b25, bc=ab3, c2=b4, bd=ab5, cd=b6, d2=b8, b2e=b7, ce=ab7, de=ab9, e2=b10, b3f=ab9, cf=ab2f, df=b10, ef=ab11, f2=b12, b4g=b11, cg=ab2g, dg=ab11, eg=b12, fg=ab13, g2=b14, b5h=ab13, ch=ab2h, dh=ab4h, eh=ab13, fh=b14, gh=ab15, h2=b16, b6i=b15, ci=ab2i, di=ab4i, ei=b5i, fi=ab15, gi=b16, hi=ab17, i2=b18, b7j=ab17, cj=ab2j, dj=ab4j, ej=b5j, fj=ab6j, gj=ab17, hj=b18, ij=ab19, j2=b20, b8k=b19, ck=ab2k, dk=ab4k, ek=b5k, fk=ab6k, gk=b7k, hk=ab19, ik=b20, jk=ab21, k2=b22, b9l=ab21, cl=ab2l, dl=ab4l, el=b5l, fl=ab6l, gl=b7l, hl=ab8l, il=ab21, jl=b22, kl=ab23, l2=b24, b10m=b23, cm=ab2m, dm=ab4m, em=b5m, fm=ab6m, gm=b7m, hm=ab8m, im=b9m, jm=ab23, km=b24, lm=ab25, m2=b26, b11n=ab25, cn=ab2n, dn=ab4n, en=b5n, fn=ab6n, gn=b7n, hn=ab8n, in=b9n, jn=ab10n, kn=ab25, ln=b26, mn=ab25, n2=b26, b12o=b25, co=ab2o, do=ab4o, eo=b5o, fo=ab6o, go=b7o, ho=ab8o, io=b9o, jo=ab10o, ko=b11o, lo=ab25, mo=b26, no=ab25, o2=b26, b11p=ab10o, cp=ab2p, dp=ab4p, ep=b5p, fp=ab6p, gp=b7p, hp=ab8p, ip=b9p, jp=ab10p, kp=ab10o, lp=b11o, mp=ab25, np=b26, op=ab25, p2=b26, b10q=ab9p, cq=ab2q, dq=ab4q, eq=b5q, fq=ab6q, gq=b7q, hq=ab8q, iq=b9q, jq=b9p, kq=ab10p, lq=ab10o, mq=b11o, nq=ab25, oq=b26, pq=ab25, q2=b26, b9r=ab8q, cr=ab2r, dr=ab4r, er=b5r, fr=ab6r, gr=b7r, hr=ab8r, ir=ab8q, jr=b9q, kr=b9p, lr=ab10p, mr=ab10o, nr=b11o, or=ab25, pr=b26, qr=ab25, r2=b26, b8s=ab7r, cs=ab2s, ds=ab4s, es=b5s, fs=ab6s, gs=b7s, hs=b7r, is=ab8r, js=ab8q, ks=b9q, ls=b9p, ms=ab10p, ns=ab10o, os=b11o, ps=ab25, qs=b26, rs=ab25, s2=b26, b7t=ab6s, ct=ab2t, dt=ab4t, et=b5t, ft=ab6t, gt=ab6s, ht=b7s, it=b7r, jt=ab8r, kt=ab8q, lt=b9q, mt=b9p, nt=ab10p, ot=ab10o, pt=b11o, qt=ab25, rt=b26, st=ab25, t2=b26, b6u=ab5t, cu=ab2u, du=ab4u, eu=b5u, fu=b5t, gu=ab6t, hu=ab6s, iu=b7s, ju=b7r, ku=ab8r, lu=ab8q, mu=b9q, nu=b9p, ou=ab10p, pu=ab10o, qu=b11o, ru=ab25, su=b26, tu=ab25, u2=b26, b5v=ab4u, cv=ab2v, dv=ab4v, ev=ab4u, fv=b5u, gv=b5t, hv=ab6t, iv=ab6s, jv=b7s, kv=b7r, lv=ab8r, mv=ab8q, nv=b9q, ov=b9p, pv=ab10p, qv=ab10o, rv=b11o, sv=ab25, tv=b26, uv=ab25, v2=b26, b4w=ab3v, cw=ab2w, dw=b3v, ew=ab4v, fw=ab4u, gw=b5u, hw=b5t, iw=ab6t, jw=ab6s, kw=b7s, lw=b7r, mw=ab8r, nw=ab8q, ow=b9q, pw=b9p, qw=ab10p, rw=ab10o, sw=b11o, tw=ab25, uw=b26, vw=ab25, w2=b26, b3x=ab2w, cx=ab2x, dx=b3w, ex=b3v, fx=ab4v, gx=ab4u, hx=b5u, ix=b5t, jx=ab6t, kx=ab6s, lx=b7s, mx=b7r, nx=ab8r, ox=ab8q, px=b9q, qx=b9p, rx=ab10p, sx=ab10o, tx=b11o, ux=ab25, vx=b26, wx=ab25, x2=b26, b2y=abx, cy=bx, dy=ab2w, ey=b3w, fy=b3v, gy=ab4v, hy=ab4u, iy=b5u, jy=b5t, ky=ab6t, ly=ab6s, my=b7s, ny=b7r, oy=ab8r, py=ab8q, qy=b9q, ry=b9p, sy=ab10p, ty=ab10o, uy=b11o, vy=ab25, wy=b26, xy=ab25, y2=b26, b3z=ay, cz=ab2z, dz=by, ez=bx, fz=ab2x, gz=ab2w, hz=b3w, iz=b3v, jz=ab4v, kz=ab4u, lz=b5u, mz=b5t, nz=ab6t, oz=ab6s, pz=b7s, qz=b7r, rz=ab8r, sz=ab8q, tz=b9q, uz=b9p, vz=ab10p, wz=ab10o, xz=b11o, yz=ab25, z2=b26>

P = {a, b2, b4, b6, b8, b10, b12, b14, b16, b18, b20, b22, b24, b26, ae, bf, ag, ab2g, bh, b3h, ai, ab2i, ab4i, bj, b3j, b5j, ak, ab2k, ab4k, ab6k, bl, b3l, b5l, b7l, am, ab2m, ab4m, ab6m, ab8m, bn, b3n, b5n, b7n, b9n, ao, ab2o, ab4o, ab6o, ab8o, ab10o, bp, b3p, b5p, b7p, b9p, aq, ab2q, ab4q, ab6q, ab8q, br, b3r, b5r, b7r, as, ab2s, ab4s, ab6s, bt, b3t, b5t, au, ab2u, ab4u, bv, b3v, aw, ab2w, bx, ay, bz}

Phi = 1 a a a a b b b b a a a c b b b b3 c c c d b3 b3 b3 b5 d d ab4 ab6 e e b5 b7 f f ab6 ab8 g g b7 b9 h h ab8 ab10 i i b9 b11 j j ab10 ab12 k k b11 b13 l l ab12 ab14 m m b13 b15 n n ab14 ab16 o o b15 b17 p p ab16 ab18 q q b17 b19 r r ab18 ab20 s s b19 b21 t t ab20 ab22 u u b21 b23 v v ab22 ab24 w w b23 b25 x x ab24 ab26 y y b25 b25 b2z b2z ab26 ab26 abz abz b25 b25 z z ab26 ab26

Monoid Structure

Idempotent  |G|  |Arch|
122
b26 *4346