Details Page for 0.1642

Complete Solution is Known:

Period:  
Preperiod:  
Quotient Size:   1442
P-Portion Size:   203
Tame?   No

MSV File: q-0.1642.msv

Growth Pattern:

Heap   Q-Size   P-Size
121
562
8102
13123
19368
25448
287013
299016
3439460
371442203

(Click on a heap to see details)

Details for Q37(0.1642):

Q = <a,b,c,d,e,f,g,h,i,j,k,l | a2=1, b3=b, b2c=c, c3=c, cd=ab2d, d3=d, b2e=e, de=bd, e2=b2, bdf=abd, b2f2=f2, cf2=ab2d2, df2=b2d, ef2=bf2, f3=ab2d2, b2g=g, c2g=g, eg=bg, dfg=adg, f2g=d2g, dg2=b2d, g3=g, b2h=h, c2h=h, dh=ab2d, f2h=ab2d2, fgh2=ad2g, h3=ah2, di=df, ei=bi, fi=f2, g2i=c2i, hi=b2d2, i2=b2d2, dj=bd2g, b2fj=fj, f2j=bdg, gj=bd, h2j=ahj, bij=adg, cij=bdg, b2j2=j2, c2j2=j2, fj2=fh2, hj2=aj2, ij2=ab2d2, j3=ahj, b2k=k, dk=abd, cik=abd2, gik=bd2g, ijk=dg, k2=b2d2, b2l=l, c2l=l, dl=ab2d, f2l=ab2d2, ijl=bdg, ikl=abd2, el2=bl2, fgl2=fg, fhl2=fg2h, ghl2=gh, il2=cil, gkl2=gk, gl3=gl, l4=l2>

P = {a, b2, ac, c2, ad, ad2, b2d2, be, abce, bc2e, bf, bcf, bc2f, ef, cef, c2ef, f2, g2, acg2, afg2, cfg2, ah, ch, abeh, bceh, abfh, abcfh, aefh, acefh, ag2h, cg2h, fg2h, acfg2h, h2, ach2, beh2, abceh2, bfh2, bcfh2, efh2, cefh2, g2h2, acg2h2, abi, bci, abc2i, bgi, abcgi, fj, acfj, c2fj, befj, abcefj, bc2efj, afhj, cfhj, abefhj, bcefhj, aij, j2, acj2, bej2, abcej2, abfk, abcfk, aefk, acefk, gk, cgk, bfg2k, abcfg2k, bhk, ehk, bcfhk, cefhk, fghk, cfghk, bg2hk, abcg2hk, bcfg2hk, abh2k, aeh2k, abcfh2k, acefh2k, agh2k, acgh2k, abg2h2k, bik, abcjk, acejk, abc2fjk, ac2efjk, bchjk, cehjk, bfhjk, efhjk, abj2k, aej2k, al, cl, abel, bcel, fl, aefl, ag2l, cg2l, fg2l, acfg2l, hl, achl, behl, abcehl, afhl, efhl, g2hl, acg2hl, afg2hl, cfg2hl, ah2l, ch2l, abeh2l, bceh2l, fh2l, aefh2l, ag2h2l, cg2h2l, bgil, bcgil, cfjl, abefjl, bcefjl, acfhjl, befhjl, abcefhjl, aj2l, cj2l, abej2l, bcej2l, abfkl, bcfkl, cefkl, gkl, cgkl, abfg2kl, bcfg2kl, abhkl, bchkl, aehkl, fghkl, abg2hkl, bcg2hkl, abfh2kl, bcfh2kl, cefh2kl, cgh2kl, cejkl, bfjkl, abcfjkl, efjkl, acefjkl, bhjkl, abchjkl, ehjkl, acehjkl, aefhjkl, l2, acl2, afl2, cfl2, g2l2, acg2l2, ahl2, chl2, h2l2, ach2l2, j2l2, acj2l2, bfkl2, abcfkl2, bhkl2, abchkl2, abh2kl2, abfjkl2, bchjkl2, abj2kl2, al3, cl3, fl3, acfl3, hl3, achl3, ah2l3, ch2l3, aj2l3, cj2l3, abfkl3, bcfkl3, abhkl3, bchkl3, bfjkl3, abcfjkl3, bhjkl3, abchjkl3}

Phi = 1 a 1 1 a bd bd abd b b ab a c d abd bd bd abd e f abc2 b2d b2d ab2d abd g bd h i j ab2d b2d b2d ab2d k abd2 ik l bdg

Monoid Structure

Idempotent  |G|  |Arch|
122
b288
c21616
d244
b2d2 *161018
g21616
h21632
g2h23264
j23258
l21632
g2l23232
h2l21664
j2l23296