Details Page for 0.1666

Complete Solution is Known:

Period:  
Preperiod:  
Quotient Size:   1056
P-Portion Size:   7
Tame?   No

MSV File: q-0.1666.msv

Growth Pattern:

Heap   Q-Size   P-Size
121
462
7102
10122
11164
12244
17405
18446
19487
56647
140967
3401607
8832887
18065447
496510567

(Click on a heap to see details)

Details for Q340(0.1666):

Q = <a,b,c,d,e,f,g,h,i,j,k | a2=1, b3=b, bc=ab, c2=b2, d2=1, be=bd, e2=b2, cf=ab2f, f2=b2, bg=ab, cg=ac, eg=ae, fg=af, g2=ag, bh=ab, ch=b2, eh=ce, fh=ab2f, gh=ah, h2=b2, b2i=i, ci=ai, ei=di, gi=ai, hi=ai, i2=b2, b2j=j, cj=aj, ej=dj, gj=aj, hj=aj, j2=b2, b2k=k, ck=ak, ek=dk, gk=ak, hk=ak, k2=b2>

P = {a, b2, ad, cd, adef, dg, ah}

Phi = 1 a 1 1 bd bd abd b b a c d e bd bd ab b f g h abd abd bdf ab b b b2f b2d b2d abdf bdf ab2 abd ab2f b2f b2f b2d ab2d bdf b b abd abd b2f b2d ab2 ab2 bdf bdf bf abf ab2df b2d b2d abdf b i bf ai bdi ab2df b2df bi bi abf b2d b di abdi b2df b2f b2f ai abf abdf b b2d b2d b2df bi bi abf bdf bdf abdf afi abd abd ab2f ab2 ab2 di bdf bdf b2d b2f ab2f b b abdf abdf i b2d b2f b2f ab2df ab di di abd b2d ai ab2 b2f bdi bdf bd i b2d b2d ab2 ab2 bdi afi abd abd i i abdfi bfi abdi abdi b2d ai adi adi abfi ab2 bdi bdi j abd abd b b ab2 abdfi b2d b2d ab2df j ab b2f ab2 ab2 ai b2d aj j b b abf bdj bdj b2d aj ab2 ab2 afi b2f b2f bdfi ab2d ab2d bfi j b abd abd abdj bj bdf ab2 abf abf bdj bdj ab2df b2df b ab2 i abf dfi dfi bdi abdi abdi ab2 ab2 b2d b2d b afi ab2df ab2df b2f b2f fj adj di afi adfi fi ab2df b2f j j aj di abdf abd abd ab2 ab2 afj j adi bdf adj bi b2f ab2f ab2 j abdf bdf i adfi bi bi ab2df ab2df di abd b2d abf b2f bj bdi ab2df ab2df adj b2d b2d afi bj abfj abdi afj abdfi bd i i bfi bfi abdi abdi abd dj dfj abf bdij bdfj bdi b2d adj abd b b ab2 ab2 abdj b2d ab2df ab2df ab b fij ab2 ab2 ij adij abfi aj b b abf bfj abdfi abdfi adij j aj afj afj bdfi ab2d abj bfi bfi b b abd abd fij bdf bdf abdfij j adj adj adij dfj bj b abfi bdfi abi abdfij j fi bdf bdj bfi b2d b2d dfj dfj ab2df k bdj bdj abi abf abdfi di aj b fij abfj abi abfi afj j bij b fi bdj ab2 k dfj adi bdf adj adj adfi bdj afij abdi abdf bdf i i bfj abi ab2df ab2df j abij abd abd bdfij b2f fi ab2df ab2df dfj adj abf abf di bfj bdi b2d b2d afj i i j ij abdi abdi abd abd bf abf adi adi aij b2f abdfi abi fj ab2 dfj adi adi bfj bdj abi b2f abij ab2 bdf ai abdfi abdfj abi abi b afj abf b2d b2d k bfj ak bdk bdi afj i abk abij abfij ij b b abd abd ak abdfj abj ab2 bdk b2f adj abd bdij ak b abj abdk bdk bdfi abd k bdf afij bfi dk bk adij abk ab2df dfj k bdj bdj dfk adij j aj b dk bij bfj fij abfi abk j j afi abdk b2f b2f adfk bk adi j abf abf bfj ak dfij ab2 ab2 abdk i adj b2f adij ab2df ab2df bfi bfi bfj abdk abdfk fi fi bdi ik bdk abf abf bk di abdfj afij afij ik aik k j adfk abdi abfk bfj b2f dik bij dfj j fk fk bfj b2f afi bk abdk bfij bfk adfi adij abi afij bfi ik bdk bdf afk bfj abdfj bdfk ab2df abj afj abij abd b2d ak abdfj jk bdi bfk ik abd abk k ab2 ab2 aik bfk adfi afk i k ij ij ab2df bfk abd afj b b abik afk bfj bdi abd abd abfij ab2 bdjk dk b2d b2d bfj bk abdjk dfj abfi bdj abdfi abdfi bfj aj aj dfj dk bjk adfk ij ij abk bdk dfj afj afj abdj bfj ab2 abk ik b adj b2f abdfk ak abdik bdf abfi ik adj adj adk abik abj abj afk bf bf abd k k abdfik abdi fij dfik abdfij adfk dfk dk ab2df ab2df bdj bdik bdk adfk j j abdfik afj b2f b2f abfi adik abk j adj afk ab2 abdik afij afij abdk bdjk dj dfi bfik bfik bdfk abdfk bdf j abd afk abdik ak ab2df abj abj di bdfij abdfij abdjk dfk ab2df bdi bdi dfj bjk bjk abk bfik ab2 ab2df bfk b abf afik bjk j bdfj ab2df fjk abd bfk afj dfk afi abdjk abdjk abi ajk k afj ai ab2 adk dk dfik bdfi bk adik ik fi bdij abik abdik ij aij aj dfj bfk abdjk adfi k adij abdfj afik b aik abd afj k adfk bdik abdfj dfik adj adj dfj bdfjk bj dfij adij fjk abdfij j ijk adfk abjk bj afk b2d dj abdfk afik bjk ijk ijk abj dfik abdfi adj adfjk b b dk fk bdfijk bdijk bdfk j bdf bdf afk b2f b2f bi dfk abk afik di abd adfi afj b2d b2d bdf bdf abfij adj adj bjk abj b2df adjk ik j bdf dijk bfj bdik ab2df ab2df bdk abk bdfjk dfi bfij abdfj abdfj bdi djk ajk abk bdf bdf abfij abfij b2d b2d dfj dfij fik bdik ijk abdi bdfik b2f adfjk afj b b bjk abdjk abdfj b2d b2f bdfijk bdfijk afj bdf afk bik b2d b2d abfi ab2df bfi

Monoid Structure

Idempotent  |G|  |Arch|
144
b2 *128152
ag44