Details Page for 0.1705

Complete Solution is Known:

Period:  
Preperiod:  
Quotient Size:   3398
P-Portion Size:   248
Tame?   No

MSV File: q-0.1705.msv

Growth Pattern:

Heap   Q-Size   P-Size
121
462
9102
13325
14366
15446
20609
2139430
222830198
233398248

(Click on a heap to see details)

Details for Q22(0.1705):

Q = <a,b,c,d,e,f,g,h,i,j | a2=1, b3=b, b2c2=c2, c5=c3, bd=b2c, cd=bc2, d2=c2, c3e=c4, c2e3=c2e, e4=e2, bf=ab2c, c2f=abc3, df=ac2, ce3f=cef, f2=c2, b2g=g, dg=bcg, fg=abcg, c3g2=c3, c2eg3=c3g, ce3g3=ceg3, ceg4=c4, c2g5=c4g, cg6=c3, eg6=eg4, g8=g6, b2ch=ch, c2h=ac2, dh=bch, ceh=ab2ce, be2h=abe2, cfh=bc2, efh=de, e2gh=ae2g, cg3h=acg3, b2h2=h2, e2h2=b2e2, fh2=abch2, ch3=ach2, eh3=aeh2, h4=ah3, b2i=i, c3i=ac4, di=bci, fi=abci, ehi=aei, cg2h2i=acg2hi, c2i2=c2, cei2=b2ce, cg3i2=cg3, e3g4i2=eg4i2, cg2hi2=acg2h2, g4hi2=ag4i2, ch2i2=ch2, g2h2i2=ag2hi2, h3i2=ah2i2, ci3=ci, i4=i2, c3j=abc4, dj=bcj, c2ej=abc4, ce2g2j=bc2eg2i, ceg3j=abc3g, b2hj=hj, e2hj=ab2e2j, fhj=abchj, chij=acij, ci2j=ch2j, e2g3i2j=bceg3i, eg4i2j=abc4, g2hi2j=ag2i2j, gh2i2j=aghi2j, b2j2=j2, c2j2=c4, cej2=c4, fj2=abcj2, cg3j2=abc2g3j, e2g3j2=e2gj2, eg5j2=eg3j2, ch2j2=abc2j, cij2=abc2ij, e2g2ij2=e2ij2, ei2j2=c3, g5i2j2=abcg5j, hi2j2=ai2j2, e2g2j3=e2j3, g6j3=g4j3, eh2j3=e3j3, h3j3=ae2j3, eij3=bc3, i2j3=abc3, ej4=cj4, cj5=cj3, j6=j4>

P = {a, b2, c2, c4, ae, bce, ae2, b2e2, c2e2, ae3, bce3, ef, e3f, g2, c2g2, ceg2, e2g2, c2e2g2, ce3g2, g4, c2g4, e2g4, g6, bh, ag2h, ag4h, ag6h, h2, g2h2, g4h2, g6h2, ah3, ag2h3, ag4h3, ag6h3, bcei, bce3i, gi, c2egi, e2gi, acg2i, aeg2i, ace2g2i, ae3g2i, ceg3i, acg4i, eg5i, e3g5i, bhi, bcghi, ag3hi, cgh2i, g3h2i, ag3h3i, i2, e2i2, g2i2, e2g2i2, g4i2, e2g4i2, g6i2, bhi2, ag2hi2, h2i2, gi3, e2gi3, aeg2i3, ae3g2i3, eg5i3, bhi3, ag3hi3, aj, ab2j, ae2j, ae3j, efj, e2fj, e3fj, cgj, egj, ce2gj, e3gj, bg3j, be2g3j, abcg4j, abeg4j, abe3g4j, abhj, acghj, aeghj, abg3hj, beg4hj, cgh2j, egh2j, bg3h2j, abeg4h2j, abg3h3j, bc2ij, be2ij, agij, cg2ij, be2g2ij, c2g3ij, abeg3ij, bg4ij, be2g4ij, abcg5ij, g7ij, abhij, abg4hij, ag7hij, ah2ij, bg4h2ij, g7h2ij, h3ij, abg4h3ij, ag7h3ij, ai2j, egi2j, e3gi2j, bg3i2j, be2i3j, agi3j, be2g2i3j, abeg3i3j, bg4i3j, g7i3j, abhi3j, ah2i3j, j2, be2j2, g2j2, e2g2j2, g4j2, g6j2, bhj2, ag2hj2, ag4hj2, ag6hj2, h2j2, g2h2j2, g4h2j2, g6h2j2, ah3j2, ag2h3j2, ag4h3j2, ag6h3j2, egij2, e3gij2, aeg4ij2, g5ij2, ag5hij2, g5h2ij2, ag5h3ij2, i2j2, g2i2j2, g4i2j2, aj3, cgj3, egj3, e3gj3, bg3j3, abeg4j3, abhj3, acghj3, aeghj3, abg3hj3, beg4hj3, ag2ij3, bg4ij3, abhij3, g2hij3, abg4hij3, bh2ij3, bg2h2ij3, bg4h2ij3, j4, g2j4, g4j4, bhj4, ag2hj4, ag4hj4, h2j4, g2h2j4, g4h2j4, aj5, bg3j5, abhj5, abg3hj5, agij5, bg3ij5, g5ij5, abhij5, abg3hij5, ag5hij5, bh2ij5, ag3h2ij5, g5h2ij5}

Phi = 1 a a 1 b a ab b b c c a d e f g b b ab ab2 h i j

Monoid Structure

Idempotent  |G|  |Arch|
122
b244
c4 *161988
e246
b2e2826
e2g416100
g6828
ah3414
ag6h3884
i2812
e2i21636
e2g4i232164
g6i216200
h2i2828
j4822
g4j416116