Details Page for 0.2014

Complete Solution is Known:

Period:  
Preperiod:  
Quotient Size:   2258
P-Portion Size:   336
Tame?   No

MSV File: q-0.2014.msv

Growth Pattern:

Heap   Q-Size   P-Size
221
362
6123
9246
10329
134010
145811
156813
167214
1714423
18904142
19916142
20936147
211388196
221546226
232258336

(Click on a heap to see details)

Details for Q20(0.2014):

Q = <a,b,c,d,e,f,g,h,i,j,k,l,m,n | a2=1, b4=b2, b2c=b3, bc3=bc, c4=c2, b2d=b3, bcd=b3, cd2=b3, bd3=bd, d4=d2, b2e=ab3, bce=ab3, bde=ab3, cde=ab3, e2=abe, b2f=b3, bc2f=bf, c3f=cf, bdf=b3, d2f=b3, bef=ab3, def=ab3, f2=b2, bg=ab2, c2g=g, dg=ab2, eg=b2, g2=b2, b2h=ab2, bdh=ab2, cdh=adf, d2h=abd, ceh=aef, deh=beh, bfh=ab2, c2fh=fh, dfh=ab2, efh=b2, gh=acfg, h2=b2, bi=ad3e, ci=bf, d3i=di, ei=abeh, fi=b2, gi=ab2, hi=d2e, i2=b2, b2j=ab3, bcj=ab3, dj=be, ej=abe, bfj=ab3, gj=b2, chj=afj, fhj=b2, ij=abeh, j2=abe, b2k2=b2, bck2=bc, dk2=d, ek2=e, bfk2=bf, fhk2=fh, ik2=i, cjk2=cj, fjk2=fj, bk3=bk, fk3=fk, gk3=gk, hk3=hk, jk3=jk, k4=k2, b2l=ab2, bdl=abd, d2l=ad2, bel=abe, c2el=c2d, del=ade, bfl=bch, cdfl=abcf, efl=df, chl=afl, fhl=b3, dil=adi, cjl=ace, fjl=aef, bcl2=abcl, c2dl2=abc2l, il2=ail, dl3=adl2, fgkl3=acfhk, el4=ael3, gkl4=fhk, fl5=afl4, bjkl5=abek, hjkl5=ehkl3, l6=al5, bm=ab2, c2m=m, dm=ab2, em=b2, fm=ab2, gm=b2, hm=afh, im=ab2, jm=b2, k3m=km, lm=cfgl, m2=b2, bn=b3k, dn=b3k, en=ab3k, fn=b3k, gn=ab3k, c2hn=hn, in=b3k, jn=ab3k, kn=b2, c2ln=hn, hln=b2k, l3n=al2n, mn=ab3k, n2=b2>

P = {a, b2, c, ac2, c3, ad, cd, c3d, ad2, ad3, be, ace, ac3e, de, bf, df, c2df, aef, ac2ef, cg, ach, ac3h, ai, ad2i, j, acj, ac3j, afj, ac2fj, bhj, ak, adk, ek, hk, dhk, aehk, aik, jk, ahjk, ak2, ck2, ac2k2, c3k2, cgk2, achk2, ac3hk2, jk2, bhjk2, ak3, l, bcl, c2l, dl, cel, adfl, acgl, il, ajl, abhjl, kl, dkl, aekl, ahkl, adhkl, ehkl, ikl, ajkl, hjkl, k2l, c2k2l, acgk2l, ajk2l, abhjk2l, k3l, al2, ac2l2, adl2, acel2, dfl2, cgl2, jl2, bhjl2, akl2, adkl2, ekl2, hkl2, dhkl2, aehkl2, jkl2, ahjkl2, ak2l2, ac2k2l2, cgk2l2, jk2l2, bhjk2l2, ak3l2, l3, c2l3, cel3, acgl3, ajl3, abhjl3, kl3, aekl3, ahkl3, ehkl3, ajkl3, hjkl3, k2l3, c2k2l3, acgk2l3, ajk2l3, abhjk2l3, k3l3, al4, ac2l4, cgl4, jl4, bhjl4, akl4, ac2fkl4, hkl4, jkl4, ahjkl4, ak2l4, cfk2l4, jk2l4, bhjk2l4, ak3l4, ac3k3l4, l5, c2l5, acgl5, ajl5, abhjl5, kl5, ahkl5, ajkl5, k2l5, ac2k2l5, k3l5, c3k3l5, acn, ac3n, chn, cln, acl2n}

Phi = 1 1 a b b2 ab2 c 1 a d e ab2 f g h i j k l m n

Monoid Structure

Idempotent  |G|  |Arch|
122
b2 *8724
c246
d2820
k246
c2k2818
al5210
ac2l5430
ak2l5430
ac2k2l5890