Period: | |
Preperiod: | |
Quotient Size: | 374 |
P-Portion Size: | 93 |
Tame? | No |
MSV File: q-0.2406.msv
Heap | Q-Size | P-Size |
2 | 2 | 1 |
5 | 6 | 2 |
12 | 8 | 2 |
29 | 12 | 3 |
33 | 18 | 4 |
37 | 22 | 5 |
41 | 28 | 6 |
45 | 34 | 8 |
49 | 42 | 9 |
53 | 50 | 12 |
57 | 60 | 13 |
61 | 70 | 17 |
65 | 82 | 18 |
69 | 94 | 23 |
73 | 108 | 24 |
77 | 122 | 30 |
81 | 138 | 31 |
85 | 154 | 38 |
89 | 172 | 39 |
93 | 190 | 47 |
97 | 210 | 48 |
101 | 230 | 57 |
105 | 252 | 58 |
109 | 274 | 68 |
113 | 298 | 69 |
117 | 322 | 80 |
121 | 348 | 81 |
125 | 374 | 93 |
(Click on a heap to see details)
Q = <a,b,c,d,e,f,g,h,i,j,k,l,m,n,o,p,q,r,s,t,u,v,w,x,y,z | a2=1, b28=b26, bc=ab3, c2=b4, bd=ab5, cd=b6, d2=b8, b2e=b7, ce=ab7, de=ab9, e2=b10, b3f=b9, cf=ab2f, df=ab10, ef=b11, f2=b12, b4g=b11, cg=ab2g, dg=ab11, eg=b12, fg=b13, g2=b14, b5h=b13, ch=ab2h, dh=ab4h, eh=b13, fh=b14, gh=b15, h2=b16, b6i=b15, ci=ab2i, di=ab4i, ei=b5i, fi=b15, gi=b16, hi=b17, i2=b18, b7j=b17, cj=ab2j, dj=ab4j, ej=b5j, fj=b6j, gj=b17, hj=b18, ij=b19, j2=b20, b8k=b19, ck=ab2k, dk=ab4k, ek=b5k, fk=b6k, gk=b7k, hk=b19, ik=b20, jk=b21, k2=b22, b9l=b21, cl=ab2l, dl=ab4l, el=b5l, fl=b6l, gl=b7l, hl=b8l, il=b21, jl=b22, kl=b23, l2=b24, b10m=b23, cm=ab2m, dm=ab4m, em=b5m, fm=b6m, gm=b7m, hm=b8m, im=b9m, jm=b23, km=b24, lm=b25, m2=b26, b11n=b25, cn=ab2n, dn=ab4n, en=b5n, fn=b6n, gn=b7n, hn=b8n, in=b9n, jn=b10n, kn=b25, ln=b26, mn=b27, n2=b26, b12o=b27, co=ab2o, do=ab4o, eo=b5o, fo=b6o, go=b7o, ho=b8o, io=b9o, jo=b10o, ko=b11o, lo=b27, mo=b26, no=b27, o2=b26, b12p=b11o, cp=ab2p, dp=ab4p, ep=b5p, fp=b6p, gp=b7p, hp=b8p, ip=b9p, jp=b10p, kp=b11p, lp=b11o, mp=b27, np=b26, op=b27, p2=b26, b11q=b10p, cq=ab2q, dq=ab4q, eq=b5q, fq=b6q, gq=b7q, hq=b8q, iq=b9q, jq=b10q, kq=b10p, lq=b11p, mq=b11o, nq=b27, oq=b26, pq=b27, q2=b26, b10r=b9q, cr=ab2r, dr=ab4r, er=b5r, fr=b6r, gr=b7r, hr=b8r, ir=b9r, jr=b9q, kr=b10q, lr=b10p, mr=b11p, nr=b11o, or=b27, pr=b26, qr=b27, r2=b26, b9s=b8r, cs=ab2s, ds=ab4s, es=b5s, fs=b6s, gs=b7s, hs=b8s, is=b8r, js=b9r, ks=b9q, ls=b10q, ms=b10p, ns=b11p, os=b11o, ps=b27, qs=b26, rs=b27, s2=b26, b8t=b7s, ct=ab2t, dt=ab4t, et=b5t, ft=b6t, gt=b7t, ht=b7s, it=b8s, jt=b8r, kt=b9r, lt=b9q, mt=b10q, nt=b10p, ot=b11p, pt=b11o, qt=b27, rt=b26, st=b27, t2=b26, b7u=b6t, cu=ab2u, du=ab4u, eu=b5u, fu=b6u, gu=b6t, hu=b7t, iu=b7s, ju=b8s, ku=b8r, lu=b9r, mu=b9q, nu=b10q, ou=b10p, pu=b11p, qu=b11o, ru=b27, su=b26, tu=b27, u2=b26, b6v=b5u, cv=ab2v, dv=ab4v, ev=b5v, fv=b5u, gv=b6u, hv=b6t, iv=b7t, jv=b7s, kv=b8s, lv=b8r, mv=b9r, nv=b9q, ov=b10q, pv=b10p, qv=b11p, rv=b11o, sv=b27, tv=b26, uv=b27, v2=b26, b5w=b4v, cw=ab2w, dw=ab4w, ew=b4v, fw=b5v, gw=b5u, hw=b6u, iw=b6t, jw=b7t, kw=b7s, lw=b8s, mw=b8r, nw=b9r, ow=b9q, pw=b10q, qw=b10p, rw=b11p, sw=b11o, tw=b27, uw=b26, vw=b27, w2=b26, b4x=b3w, cx=ab2x, dx=ab3w, ex=b4w, fx=b4v, gx=b5v, hx=b5u, ix=b6u, jx=b6t, kx=b7t, lx=b7s, mx=b8s, nx=b8r, ox=b9r, px=b9q, qx=b10q, rx=b10p, sx=b11p, tx=b11o, ux=b27, vx=b26, wx=b27, x2=b26, b3y=b2x, cy=ab2y, dy=ab3x, ey=b3w, fy=b4w, gy=b4v, hy=b5v, iy=b5u, jy=b6u, ky=b6t, ly=b7t, my=b7s, ny=b8s, oy=b8r, py=b9r, qy=b9q, ry=b10q, sy=b10p, ty=b11p, uy=b11o, vy=b27, wy=b26, xy=b27, y2=b26, b5z=by, cz=ab2z, dz=ab4z, ez=by, fz=b2y, gz=b2x, hz=b3x, iz=b3w, jz=b4w, kz=b4v, lz=b5v, mz=b5u, nz=b6u, oz=b6t, pz=b7t, qz=b7s, rz=b8s, sz=b8r, tz=b9r, uz=b9q, vz=b10q, wz=b10p, xz=b11p, yz=b11o, z2=b26>
P = {a, b2, b4, b6, b8, b10, b12, b14, b16, b18, b20, b22, b24, b26, e, bf, g, b2g, bh, b3h, i, b2i, b4i, bj, b3j, b5j, k, b2k, b4k, b6k, bl, b3l, b5l, b7l, m, b2m, b4m, b6m, b8m, bn, b3n, b5n, b7n, b9n, o, b2o, b4o, b6o, b8o, b10o, bp, b3p, b5p, b7p, b9p, b11p, q, b2q, b4q, b6q, b8q, b10q, br, b3r, b5r, b7r, b9r, s, b2s, b4s, b6s, b8s, bt, b3t, b5t, b7t, u, b2u, b4u, b6u, bv, b3v, b5v, w, b2w, b4w, bx, b3x, y, b2y, z, b2z, b4z}
Phi = 1 1 a 1 a b ab b ab 1 a 1 c b ab b ab3 ac c ac d b3 ab3 b3 ab5 ad d b4 ab6 e ae b5 ab7 f af b6 ab8 g ag b7 ab9 h ah b8 ab10 i ai b9 ab11 j aj b10 ab12 k ak b11 ab13 l al b12 ab14 m am b13 ab15 n an b14 ab16 o ao b15 ab17 p ap b16 ab18 q aq b17 ab19 r ar b18 ab20 s as b19 ab21 t at b20 ab22 u au b21 ab23 v av b22 ab24 w aw b23 ab25 x ax b24 ab26 y ay b25 ab27 b3z ab3z b26 ab26 b2z ab2z b27 ab27 bz abz b26 ab26 z az b27 ab27
Idempotent | |G| | |Arch| |
---|---|---|
1 | 2 | 2 |
b26 * | 4 | 372 |