Details Page for 0.2416

Complete Solution is Known:

Period:  
Preperiod:  
Quotient Size:   364
P-Portion Size:   91
Tame?   No

MSV File: q-0.2416.msv

Growth Pattern:

Heap   Q-Size   P-Size
221
362
1082
19123
23184
27246
31327
354010
395011
436015
477216
518421
559822
5911228
6312829
6714436
7116237
7518045
7920046
8322055
8724256
9126466
9528867
9931278
10333879
10736491

(Click on a heap to see details)

Details for Q75(0.2416):

Q = <a,b,c,d,e,f,g,h,i,j,k,l,m,n,o,p,q,r | a2=1, b18=b16, bc=ab3, c2=b4, b2d=b5, cd=ab5, d2=b6, b3e=b7, ce=ab2e, de=b7, e2=b8, b4f=b9, cf=ab2f, df=b3f, ef=b9, f2=b10, b5g=b11, cg=ab2g, dg=b3g, eg=b4g, fg=b11, g2=b12, b6h=b13, ch=ab2h, dh=b3h, eh=b4h, fh=b5h, gh=b13, h2=b14, b7i=b15, ci=ab2i, di=b3i, ei=b4i, fi=b5i, gi=b6i, hi=b15, i2=b16, b8j=b17, cj=ab2j, dj=b3j, ej=b4j, fj=b5j, gj=b6j, hj=b7j, ij=b17, j2=b16, b8k=b7j, ck=ab2k, dk=b3k, ek=b4k, fk=b5k, gk=b6k, hk=b7k, ik=b7j, jk=b17, k2=b16, b7l=b6k, cl=ab2l, dl=b3l, el=b4l, fl=b5l, gl=b6l, hl=b6k, il=b7k, jl=b7j, kl=b17, l2=b16, b6m=b5l, cm=ab2m, dm=b3m, em=b4m, fm=b5m, gm=b5l, hm=b6l, im=b6k, jm=b7k, km=b7j, lm=b17, m2=b16, b5n=b4m, cn=ab2n, dn=b3n, en=b4n, fn=b4m, gn=b5m, hn=b5l, in=b6l, jn=b6k, kn=b7k, ln=b7j, mn=b17, n2=b16, b4o=b3n, co=ab2o, do=b3o, eo=b3n, fo=b4n, go=b4m, ho=b5m, io=b5l, jo=b6l, ko=b6k, lo=b7k, mo=b7j, no=b17, o2=b16, b3p=b2o, cp=ab2p, dp=b2o, ep=b3o, fp=b3n, gp=b4n, hp=b4m, ip=b5m, jp=b5l, kp=b6l, lp=b6k, mp=b7k, np=b7j, op=b17, p2=b16, b2q=bp, cq=abp, dq=b2p, eq=b2o, fq=b3o, gq=b3n, hq=b4n, iq=b4m, jq=b5m, kq=b5l, lq=b6l, mq=b6k, nq=b7k, oq=b7j, pq=b17, q2=b16, br=q, cr=abq, dr=bp, er=b2p, fr=b2o, gr=b3o, hr=b3n, ir=b4n, jr=b4m, kr=b5m, lr=b5l, mr=b6l, nr=b6k, or=b7k, pr=b7j, qr=b17, r2=b16>

P = {a, b2, b4, b6, b8, b10, b12, b14, b16, d, be, f, b2f, bg, b3g, h, b2h, b4h, bi, b3i, b5i, j, b2j, b4j, b6j, bk, b3k, b5k, b7k, l, b2l, b4l, b6l, bm, b3m, b5m, n, b2n, b4n, bo, b3o, p, b2p, bq, r}

Phi = 1 1 a b a b ab 1 ab 1 c b c b ab3 ac ab3 ac abd d abd d ab5 e abe e ab6 f abf f ab7 g abg g ab8 h abh h ab9 i abi i ab10 j abj j ab11 k abk k ab12 l abl l ab13 m abm m ab14 n abn n ab15 o abo o ab16 p abp p ab17 q abq q ab16 r aq r ab17

Monoid Structure

Idempotent  |G|  |Arch|
122
b16 *4178