Details Page for 0.3052

Complete Solution is Known:

Period:  
Preperiod:  
Quotient Size:   390
P-Portion Size:   85
Tame?   No

MSV File: q-0.3052.msv

Growth Pattern:

Heap   Q-Size   P-Size
121
562
1782
29123
32224
34306
38367
406011
426814
467615
4811423
5012226
5413227
5616635
5818038
6220042
6423049
6625254
7027659
7230466
7433072
7836278
8039085

(Click on a heap to see details)

Details for Q58(0.3052):

Q = <a,b,c,d,e,f,g,h,i,j,k,l,m,n,o,p,q,r,s,t,u | a2=1, b11=b9, b8c=ab10, b4c2=b8, c3=ab2c2, b5d=ab6c, cd=abc2, d2=b2c2, be=ac2, ce=bc2, de=ab2c2, e2=b2c2, b7f=b7c, cf=b2c2, df=ab3c2, ef=b3c2, f2=b8, b2g=ab3f, cg=ab3c2, dg=b8, eg=ab8, fg=ab9, g2=b10, b2h=ab3c2, c2h=ab9, dh=abch, eh=b8, gh=abfh, h2=b10, b4i=b6f, ci=b8, di=ab9, ei=b9, fi=b10, gi=ab9, hi=b9, i2=b10, b3j=ab3i, cj=abch, dj=b9, ej=ab9, fj=ab10, gj=b9, hj=ab9, ij=ab10, j2=b10, b4k=b7c, bck=bfh, c2k=ab9, dk=abfh, ek=bfh, fk=b9, gk=ab10, hk=b10, ik=b9, jk=ab9, k2=b10, b4l=ab9, b2cl=fh, c2l=ab9, bdl=afh, el=b10, fl=cl, gl=abcl, hl=b10, il=fh, jl=afh, kl=bfh, l2=b10, bm=ack, cm=bfh, dm=ab9, em=b9, fm=b10, gm=ab9, hm=b9, im=b10, jm=ab10, km=b9, lm=b9, m2=b10, b3n=ck, cn=ab2n, dn=ck, en=ack, fn=abfh, gn=b9, hn=ab9, in=ab10, jn=b10, kn=ab9, ln=ab9, mn=ab10, n2=b10, b4o=abfh, co=b2n, do=ack, eo=ck, fo=bfh, go=ab9, ho=b9, io=b10, jo=ab10, ko=b9, lo=b9, mo=b10, no=ab10, o2=b10, b2p=abn, cp=bn, dp=ab2n, ep=b2n, fp=ck, gp=abfh, hp=bfh, ip=b9, jp=ab9, kp=b10, lp=b10, mp=b9, np=ab9, op=b9, p2=b10, b4q=b2l, b2cq=cl, c2q=ab9, b2dq=dl, eq=b10, fq=cq, gq=abcq, hq=b10, iq=abdq, jq=bdq, kq=adl, lq=b10, mq=b9, nq=ab9, oq=fh, pq=b10, q2=b10, br=ap, cr=bp, dr=bn, er=abn, fr=ab2n, gr=ck, hr=ack, ir=abfh, jr=bfh, kr=ab9, lr=ab9, mr=ab10, nr=b10, or=ab10, pr=ab9, qr=ab9, r2=b10, bs=ar, cs=ap, ds=bp, es=abp, fs=bn, gs=ab2n, hs=b2n, is=ck, js=ack, ks=bfh, ls=bfh, ms=b9, ns=ab9, os=b9, ps=b10, qs=b10, rs=ab9, s2=b10, b2t=q, c2t=ab9, et=b10, ft=ct, gt=abct, ht=b10, it=abdt, jt=bdt, kt=adq, lt=b10, mt=b9, nt=ab9, ot=abdq, pt=b10, qt=b10, rt=ab9, st=b10, t2=b10, bu=as, cu=ar, du=ap, eu=p, fu=bp, gu=bn, hu=abn, iu=ab2n, ju=b2n, ku=ack, lu=ack, mu=abfh, nu=bfh, ou=abfh, pu=ab9, qu=ab9, ru=b10, su=ab9, tu=ab9, u2=b10>

P = {a, b2, b4, b6, b8, b10, ab2c, ab4c, ab6c, c2, b2c2, bd, b3d, ab2f, ab4f, ab6f, ag, bh, ab2i, abj, k, b2k, ack, abl, b3l, adl, abn, bo, b3o, p, abq, ab3q, bcq, adq, s, abt, bct, adt}

Phi = 1 a 1 a 1 b ab b ab a 1 a 1 b ab b ab c ac c b2 d ad d e f af f c2 g ag g h i j aj b2c2 bj k ak l m n o b8 bn p ap q bp r ar b10 ap s as t ar u au b10 as

Monoid Structure

Idempotent  |G|  |Arch|
122
b10 *4178