Details Page for 0.3054

Complete Solution is Known:

Period:  
Preperiod:  
Quotient Size:   5188
P-Portion Size:   445
Tame?   No

MSV File: q-0.3054.msv

Growth Pattern:

Heap   Q-Size   P-Size
121
662
11102
15285
167412
1710417
2584097
265188445

(Click on a heap to see details)

Details for Q26(0.3054):

Q = <a,b,c,d,e,f,g,h,i | a2=1, b3=b, b2c=c, c5=c3, c3d=c4, c2d3=c2d, d6=d2, c3e=bc4, c2d2e=c2e, c2e2=c4, b2de2=de2, b2e3=e3, ce4=c3, d4e4=d2e4, e5=bc3, c3f=abc4, cdf=abc2d, cef=abc2e, b2e2f=e2f, e4f=abc3, cf2=abc2f, df2=bc2e, ef2=bc3, f3=abc3, cg=acf, beg=abef, e2g=ae2f, fg=af2, g2=f2, c3h=ac4, b2e2h=e2h, b2f2h=f2h, egh=ab2efh, c2h2=c2, cd4h2=cd2h2, cd2e2h2=c2d, d4e3h2=d2e3h2, e4h2=e4, cfh2=cf, b2efh2=efh2, e3fh2=abce3h2, f2h2=b2f2, b2gh2=gh2, b2h3=h3, h4=b2h2, b2e2i=e2i, b2f2i=f2i, b2h2i=h2i, c2i2=c2, e4i2=e4, cfi2=cf, f2i2=b2f2, egi2=aefi2, b2hi2=hi2, ch2i2=ch2, efh2i2=efh2, gh2i2=gh2, b2i3=i3, d2e3fi3=d4e3fi, e2h2i3=e2h2i, ci4=c, fh2i4=b2fh2, e3fi5=e3fi, e3hi5=e3hi, h2i5=h2i, i6=b2i2>

P = {a, b2, c2, c4, ad, bcd, ad2, b2d2, c2d2, ad3, bcd3, ad4, b2d4, ad5, bcd5, abce, de, ab2de, bc2de, d3e, ab2d3e, d5e, ab2d5e, ae2, b2e2, cde2, bd2e2, cd3e2, bd4e2, cd5e2, bce3, bcd2e3, bcd4e3, e4, d2e4, bcf, adf, b2df, ad3f, b2d3f, ad5f, b2d5f, ef, ab2ef, ab2d2ef, ab2d4ef, abde2f, abd3e2f, abd5e2f, ae3f, ad2e3f, ad4e3f, af2, b2f2, dg, ab2dg, d3g, ab2d3g, d5g, ab2d5g, aeg, bcdh, bcd3h, bcd5h, abceh, adeh, ab2deh, cd2eh, ad4eh, abcd4eh, ad5eh, ab2d5eh, bd2e2h, abe3h, abcde3h, d3e3h, d5e3h, ade4h, bcfh, dfh, b2dfh, d3fh, b2d3fh, d5fh, b2d5fh, be2fh, bd4e2fh, de3fh, adgh, ab2dgh, ad3gh, ab2d3gh, ad5gh, ab2d5gh, h2, b2h2, bcdh2, d2h2, b2d2h2, bcd3h2, ad4h2, b2d4h2, abceh2, adeh2, ab2deh2, d3eh2, ab2d3eh2, ad5eh2, ab2d5eh2, e2h2, cde2h2, bd2e2h2, d4e2h2, bce3h2, dfh2, b2dfh2, b2d3fh2, d5fh2, b2d5fh2, aefh2, ad2efh2, ad4efh2, abde2fh2, abd3e2fh2, abd5e2fh2, adgh2, ad3gh2, ad5gh2, bcdh3, bcd3h3, abceh3, adeh3, cd2eh3, bd2e2h3, abe3h3, abcde3h3, d3e3h3, dfh3, d3fh3, d5fh3, be2fh3, bd4e2fh3, adgh3, ad3gh3, ad5gh3, abcdi, abcd3i, abcd5i, dei, b2dei, acd2ei, ad3ei, ab2d3ei, cd4ei, d5ei, b2d5ei, abd2e2i, bd4e2i, de3i, ad3e3i, ad5e3i, adfi, ab2dfi, ad5fi, ab2d5fi, dgi, b2dgi, d3gi, b2d3gi, d5gi, b2d5gi, ahi, ab2hi, ac2hi, abcdhi, ad2hi, ab2d2hi, ac2d2hi, abcd3hi, d4hi, ab2d4hi, abcd5hi, bcehi, dehi, b2dehi, ad3ehi, d5ehi, b2d5ehi, abd2e2hi, acd3e2hi, acd5e2hi, d4e3hi, bd3e4hi, abcfhi, adfhi, ab2dfhi, d3fhi, ab2d3fhi, ad5fhi, ab2d5fhi, b2d2efhi, bd3e2fhi, bd5e2fhi, dghi, b2dghi, b2d3ghi, d5ghi, b2d5ghi, abcdh2i, abcd3h2i, deh2i, acd2eh2i, ad3eh2i, abd2e2h2i, de3h2i, ad3e3h2i, adfh2i, ad5fh2i, dgh2i, d3gh2i, d5gh2i, ah3i, abcdh3i, ad2h3i, abcd3h3i, ad4h3i, bceh3i, deh3i, d5eh3i, abd2e2h3i, ad4e2h3i, adfh3i, ad3fh3i, ad5fh3i, d2efh3i, bd3e2fh3i, bd5e2fh3i, dgh3i, d3gh3i, d5gh3i, i2, b2i2, bcdi2, d2i2, b2d2i2, bcd3i2, ad4i2, b2d4i2, bcd5i2, abcei2, adei2, ab2dei2, d3ei2, ab2d3ei2, ad5ei2, ab2d5ei2, e2i2, cde2i2, bd2e2i2, cd3e2i2, bd4e2i2, cd5e2i2, bce3i2, bcd2e3i2, bcd4e3i2, dfi2, b2dfi2, ad3fi2, b2d3fi2, d5fi2, b2d5fi2, aefi2, ab2efi2, ab2d2efi2, ad4efi2, ab2d4efi2, abde2fi2, abd3e2fi2, abd5e2fi2, ae3fi2, ad2e3fi2, ad4e3fi2, adgi2, ab2dgi2, d3gi2, ab2d3gi2, ad5gi2, ab2d5gi2, bcdhi2, bcd3hi2, bcd5hi2, abcehi2, adehi2, cd2ehi2, cd4ehi2, bd2e2hi2, abe3hi2, abcde3hi2, abcd3e3hi2, abd5e3hi2, dfhi2, d3fhi2, d5fhi2, be2fhi2, bd4e2fhi2, de3fhi2, d3e3fhi2, adghi2, ad3ghi2, ad5ghi2, h2i2, d2h2i2, d4h2i2, adeh2i2, ad3eh2i2, ad5eh2i2, e2h2i2, bd2e2h2i2, d4e2h2i2, dfh2i2, d3fh2i2, d5fh2i2, adeh3i2, bd2e2h3i2, abe3h3i2, abd3e3h3i2, dfh3i2, d3fh3i2, d5fh3i2, abcdi3, abcd3i3, abcd5i3, dei3, acd2ei3, ad3ei3, acd4ei3, ad5ei3, abd2e2i3, bd4e2i3, de3i3, d3e3i3, d5e3i3, adfi3, dgi3, d3gi3, d5gi3, ahi3, abcdhi3, ad2hi3, abcd3hi3, ad4hi3, abcd5hi3, bcehi3, dehi3, abd2e2hi3, bcd4e2hi3, cd5e3hi3, adfhi3, ad3fhi3, ad5fhi3, d2efhi3, bd5e2fhi3, dghi3, d3ghi3, d5ghi3, deh2i3, ad3eh2i3, ad5eh2i3, adfh2i3, ah3i3, ad2h3i3, ad4h3i3, deh3i3, adfh3i3, ad3fh3i3, ad5fh3i3, i4, d2i4, d4i4, adei4, ad3ei4, ad5ei4, e2i4, bd2e2i4, bd4e2i4, dfi4, d3fi4, d5fi4, aefi4, ad2efi4, ad4efi4, abde2fi4, abd3e2fi4, abd5e2fi4, ae3fi4, adgi4, ad3gi4, ad5gi4, adehi4, bd2e2hi4, abe3hi4, abd3e3hi4, dfhi4, d3fhi4, d5fhi4, be2fhi4, bd4e2fhi4, de3fhi4, adghi4, ad3ghi4, ad5ghi4, h2i4, d2h2i4, d4h2i4, adeh2i4, ad3eh2i4, ad5eh2i4, adeh3i4, dei5, ad3ei5, d5ei5, abd2e2i5, bd4e2i5, de3i5, d3e3i5, d5e3i5, adfi5, ad5fi5, dgi5, d3gi5, d5gi5, ahi5, ad2hi5, ad4hi5, dehi5, d5ehi5, abd2e2hi5, adfhi5, ad3fhi5, ad5fhi5, d2efhi5, bd3e2fhi5, dghi5, d3ghi5, d5ghi5}

Phi = 1 a 1 a 1 a b ab b ab b c ac c a d e f g b ab b ab b ab2 h i

Monoid Structure

Idempotent  |G|  |Arch|
122
b244
c4 *164588
d4810
b2d41620
b2h2816
b2d4h23280
i41624
d4i464120
h2i43254
d4h2i4128270