Details Page for 0.3072

Complete Solution is Known:

Period:  
Preperiod:  
Quotient Size:   334
P-Portion Size:   81
Tame?   No

MSV File: q-0.3072.msv

Growth Pattern:

Heap   Q-Size   P-Size
121
562
1782
29123
32224
34306
38367
42408
46449
505210
546213
587214
628218
669419
7010624
7412025
7813431
8215032
8616639
9018440
9420248
9822249
10224258
10626459
11028669
11431070
11833481

(Click on a heap to see details)

Details for Q82(0.3072):

Q = <a,b,c,d,e,f,g,h,i,j,k,l,m,n,o,p,q,r,s | a2=1, b17=b15, b2c=ab4, c2=b4, b2d=ab6, cd=b6, d2=b8, b2e=b7, ce=ab7, de=ab9, e2=b10, b2f=ab7, ef=abdf, f2=b10, b2g=bcf, cg=abcf, dg=ab10, eg=b11, fg=ab11, g2=b12, b3h=abdf, ch=ab2h, dh=b11, eh=ab12, fh=b12, gh=ab13, h2=b14, b5i=b13, ci=ab2i, di=ab4i, ei=b13, fi=ab13, gi=b14, hi=ab15, i2=b16, b6j=ab15, cj=ab2j, dj=ab4j, ej=b5j, fj=ab5j, gj=ab15, hj=b16, ij=ab15, j2=b16, b7k=b15, ck=ab2k, dk=ab4k, ek=b5k, fk=ab5k, gk=b6k, hk=ab15, ik=b16, jk=ab15, k2=b16, b6l=ab5k, cl=ab2l, dl=ab4l, el=b5l, fl=ab5l, gl=ab5k, hl=b6k, il=ab15, jl=b16, kl=ab15, l2=b16, b5m=ab4l, cm=ab2m, dm=ab4m, em=ab4l, fm=b4l, gm=ab5l, hm=ab5k, im=b6k, jm=ab15, km=b16, lm=ab15, m2=b16, b4n=ab3m, cn=ab2n, dn=b3m, en=ab4m, fn=b4m, gn=b4l, hn=ab5l, in=ab5k, jn=b6k, kn=ab15, ln=b16, mn=ab15, n2=b16, b3o=ab2n, co=ab2o, do=b3n, eo=b3m, fo=ab3m, go=b4m, ho=b4l, io=ab5l, jo=ab5k, ko=b6k, lo=ab15, mo=b16, no=ab15, o2=b16, b2p=abo, cp=bo, dp=ab2n, ep=b3n, fp=ab3n, gp=ab3m, hp=b4m, ip=b4l, jp=ab5l, kp=ab5k, lp=b6k, mp=ab15, np=b16, op=ab15, p2=b16, bq=ap, cq=bp, dq=ab2o, eq=ab2n, fq=b2n, gq=ab3n, hq=ab3m, iq=b4m, jq=b4l, kq=ab5l, lq=ab5k, mq=b6k, nq=ab15, oq=b16, pq=ab15, q2=b16, br=aq, cr=ap, dr=bo, er=ab2o, fr=b2o, gr=b2n, hr=ab3n, ir=ab3m, jr=b4m, kr=b4l, lr=ab5l, mr=ab5k, nr=b6k, or=ab15, pr=b16, qr=ab15, r2=b16, bs=ar, cs=aq, ds=bp, es=bo, fs=abo, gs=b2o, hs=b2n, is=ab3n, js=ab3m, ks=b4m, ls=b4l, ms=ab5l, ns=ab5k, os=b6k, ps=ab15, qs=b16, rs=ab15, s2=b16>

P = {a, b2, b4, b6, b8, b10, b12, b14, b16, ae, bf, abg, h, b2h, abi, ab3i, j, b2j, b4j, abk, ab3k, ab5k, l, b2l, b4l, abm, ab3m, n, b2n, abo, p, r}

Phi = 1 a 1 a 1 b ab b ab a 1 a 1 b ab b ab c ac c b2 abc bc abc ab3 d ad d b4 e ae e f abe g abe b6 bg h bg ab7 bh i bh b8 bi j bi ab9 bj k bj b10 bk l bk ab11 bl m bl b12 bm n bm ab13 bn o bn b14 bo p bo ab15 bp q bp b16 ap r ap ab15 aq s aq b16 ar

Monoid Structure

Idempotent  |G|  |Arch|
122
b16 *4148