Details Page for 0.3154

Complete Solution is Known:

Period:  
Preperiod:  
Quotient Size:   914
P-Portion Size:   133
Tame?   No

MSV File: q-0.3154.msv

Growth Pattern:

Heap   Q-Size   P-Size
121
262
782
9184
156611
1610016
1721431
18914133

(Click on a heap to see details)

Details for Q18(0.3154):

Q = <a,b,c,d,e,f,g,h,i,j,k | a2=1, b4=b2, bc=ab3, c2=b2, b2d2=b2, bd3=bd, cd3=cd, d4=d2, be=b3d, cd2e2=ce2, d3e2=de2, e3=de2, b2f=b3d, cf=ab3d, df=bd2, ef=b3, bf3=b2d, f5=f3, b2g=ab3d, cg=b3d, dg=abd2, e2g=ab3d, bfg=abf2, f4g=f2g, g2=b2, bd2h=bh, bfh=b2dh, f3h=b3dh, bgh=ab2dh, f2gh=ab3dh, bh2=bd2, ch2=cd2, d3h2=dh2, deh2=d3e, e2h2=d2e2, f2h2=b2, dh3=d3h, egh3=egh, fgh3=fgh, h4=h2, bi=ab3, ce2i=cdei, f3i=fi, egi=b3, f2gi=gi, fhi=ab3dh, ghi=b3dh, dh2i=d3i, eh2i=d2ei, cdei2=ce2, e2i2=e2, fi2=b3d, gi2=ab3d, cei3=cei, i4=i2, b2j=b3, cj=ab3, d3j=dj, dej=b3, e2j=b3, f3j=b2d, f2gj=ab2d, eghj=fgh, fghj=ab3h, eh3j=ehj, ij=ab3, j2=b2, bk=ab3, f2k=abf2j, egk=b3, fhk=ab3dh, ghk=b3dh, d2h2k=h2k, eh2k=d2ek, h3k=d2hk, fik=b3d, gik=ab3d, h2ik=d2ik, jk=ab3, e2k2=b2, fgk2=afgk, h2k2=d2k2, cd2ik2=cik2, ceik2=b2d, d3hik2=dhik2, d2ehik2=ehik2, d3i2k2=di2k2, ei2k2=b2d, fk3=afk2, gk3=agk2, d2hik3=hik3, i2k3=ab2, ek4=ek2, cik4=acik3, k5=k3>

P = {a, b2, cd, d2, ce, de, cd2e, d3e, e2, cde2, d2e2, f2, f4, afg, af3g, ah, cdh, ad2h, ceh, cd2eh, cde2h, h2, d2h2, agh2, acdi, acei, adei, acd2ei, ad3ei, ae2i, ad2e2i, fi, acdhi, acehi, acd2ehi, ah2i, i2, cdi2, d2i2, cei2, dei2, d3ei2, cdhi2, ad2hi2, cehi2, h2i2, ai3, acdi3, adei3, ad3ei3, acdhi3, ah2i3, aj, ad2j, af2j, aegj, fgj, hj, bdhj, f2hj, aghj, gh2j, ah3j, cdk, ae2k, ad2e2k, cdhk, d2hk, ehk, acehk, cd2ehk, d3ehk, cde2hk, d2e2hk, ah2k, ik, acdik, e2ik, acdhik, aehik, cehik, cd2ehik, ad3ehik, ai2k, cdi2k, ad2i2k, cdhi2k, d2hi2k, ehi2k, acehi2k, d3ehi2k, i3k, acdi3k, acdhi3k, aehi3k, ad3ehi3k, k2, acdk2, d2k2, agk2, cdhk2, ad2hk2, ehk2, acehk2, cd2ehk2, aik2, adeik2, ad3eik2, cdhik2, i2k2, d2i2k2, cdhi2k2, ad2hi2k2, ai3k2, cdhi3k2, ak3, cdk3, ad2k3, cdhk3, d2hk3, ehk3, acehk3, cd2ehk3, d3ehk3, ik3, deik3, acdhik3, k4, acdk4, d2k4, cdhk4, ad2hk4, aik4}

Phi = 1 a b a 1 a b c b d ad b e f g h i j k

Monoid Structure

Idempotent  |G|  |Arch|
122
b2 *16662
d246
d2e21692
f448
h246
d2h2810
i246
d2i21636
h2i2818
k448
d2k41660