Details Page for 0.3271

Complete Solution is Known:

Period:  
Preperiod:  
Quotient Size:   512
P-Portion Size:   121
Tame?   No

MSV File: q-0.3271.msv

Growth Pattern:

Heap   Q-Size   P-Size
121
362
982
12123
14184
16246
18327
204010
225011
246015
267216
288421
309822
3211228
3412829
3614436
3816237
4018045
4220046
4422055
4624256
4826466
5028867
5231278
5433879
5636491
5839292
60420105
62450106
64480120
66512121

(Click on a heap to see details)

Details for Q60(0.3271):

Q = <a,b,c,d,e,f,g,h,i,j,k,l,m,n,o,p,q,r,s,t,u,v,w,x,y,z,A,B | a2=1, b28=b26, bc=ab3, c2=b4, b2d=ab5, cd=b5, d2=b6, b3e=b7, ce=ab2e, de=ab7, e2=b8, b4f=ab9, cf=ab2f, df=ab3f, ef=ab9, f2=b10, b5g=b11, cg=ab2g, dg=ab3g, eg=b4g, fg=ab11, g2=b12, b6h=ab13, ch=ab2h, dh=ab3h, eh=b4h, fh=ab5h, gh=ab13, h2=b14, b7i=b15, ci=ab2i, di=ab3i, ei=b4i, fi=ab5i, gi=b6i, hi=ab15, i2=b16, b8j=ab17, cj=ab2j, dj=ab3j, ej=b4j, fj=ab5j, gj=b6j, hj=ab7j, ij=ab17, j2=b18, b9k=b19, ck=ab2k, dk=ab3k, ek=b4k, fk=ab5k, gk=b6k, hk=ab7k, ik=b8k, jk=ab19, k2=b20, b10l=ab21, cl=ab2l, dl=ab3l, el=b4l, fl=ab5l, gl=b6l, hl=ab7l, il=b8l, jl=ab9l, kl=ab21, l2=b22, b11m=b23, cm=ab2m, dm=ab3m, em=b4m, fm=ab5m, gm=b6m, hm=ab7m, im=b8m, jm=ab9m, km=b10m, lm=ab23, m2=b24, b12n=ab25, cn=ab2n, dn=ab3n, en=b4n, fn=ab5n, gn=b6n, hn=ab7n, in=b8n, jn=ab9n, kn=b10n, ln=ab11n, mn=ab25, n2=b26, b13o=b27, co=ab2o, do=ab3o, eo=b4o, fo=ab5o, go=b6o, ho=ab7o, io=b8o, jo=ab9o, ko=b10o, lo=ab11o, mo=b12o, no=ab27, o2=b26, b13p=ab12o, cp=ab2p, dp=ab3p, ep=b4p, fp=ab5p, gp=b6p, hp=ab7p, ip=b8p, jp=ab9p, kp=b10p, lp=ab11p, mp=b12p, np=b12o, op=ab27, p2=b26, b12q=ab11p, cq=ab2q, dq=ab3q, eq=b4q, fq=ab5q, gq=b6q, hq=ab7q, iq=b8q, jq=ab9q, kq=b10q, lq=ab11q, mq=ab11p, nq=b12p, oq=b12o, pq=ab27, q2=b26, b11r=ab10q, cr=ab2r, dr=ab3r, er=b4r, fr=ab5r, gr=b6r, hr=ab7r, ir=b8r, jr=ab9r, kr=b10r, lr=b10q, mr=ab11q, nr=ab11p, or=b12p, pr=b12o, qr=ab27, r2=b26, b10s=ab9r, cs=ab2s, ds=ab3s, es=b4s, fs=ab5s, gs=b6s, hs=ab7s, is=b8s, js=ab9s, ks=ab9r, ls=b10r, ms=b10q, ns=ab11q, os=ab11p, ps=b12p, qs=b12o, rs=ab27, s2=b26, b9t=ab8s, ct=ab2t, dt=ab3t, et=b4t, ft=ab5t, gt=b6t, ht=ab7t, it=b8t, jt=b8s, kt=ab9s, lt=ab9r, mt=b10r, nt=b10q, ot=ab11q, pt=ab11p, qt=b12p, rt=b12o, st=ab27, t2=b26, b8u=ab7t, cu=ab2u, du=ab3u, eu=b4u, fu=ab5u, gu=b6u, hu=ab7u, iu=ab7t, ju=b8t, ku=b8s, lu=ab9s, mu=ab9r, nu=b10r, ou=b10q, pu=ab11q, qu=ab11p, ru=b12p, su=b12o, tu=ab27, u2=b26, b7v=ab6u, cv=ab2v, dv=ab3v, ev=b4v, fv=ab5v, gv=b6v, hv=b6u, iv=ab7u, jv=ab7t, kv=b8t, lv=b8s, mv=ab9s, nv=ab9r, ov=b10r, pv=b10q, qv=ab11q, rv=ab11p, sv=b12p, tv=b12o, uv=ab27, v2=b26, b6w=ab5v, cw=ab2w, dw=ab3w, ew=b4w, fw=ab5w, gw=ab5v, hw=b6v, iw=b6u, jw=ab7u, kw=ab7t, lw=b8t, mw=b8s, nw=ab9s, ow=ab9r, pw=b10r, qw=b10q, rw=ab11q, sw=ab11p, tw=b12p, uw=b12o, vw=ab27, w2=b26, b5x=ab4w, cx=ab2x, dx=ab3x, ex=b4x, fx=b4w, gx=ab5w, hx=ab5v, ix=b6v, jx=b6u, kx=ab7u, lx=ab7t, mx=b8t, nx=b8s, ox=ab9s, px=ab9r, qx=b10r, rx=b10q, sx=ab11q, tx=ab11p, ux=b12p, vx=b12o, wx=ab27, x2=b26, b4y=ab3x, cy=ab2y, dy=ab3y, ey=ab3x, fy=b4x, gy=b4w, hy=ab5w, iy=ab5v, jy=b6v, ky=b6u, ly=ab7u, my=ab7t, ny=b8t, oy=b8s, py=ab9s, qy=ab9r, ry=b10r, sy=b10q, ty=ab11q, uy=ab11p, vy=b12p, wy=b12o, xy=ab27, y2=b26, b3z=ab2y, cz=ab2z, dz=b2y, ez=ab3y, fz=ab3x, gz=b4x, hz=b4w, iz=ab5w, jz=ab5v, kz=b6v, lz=b6u, mz=ab7u, nz=ab7t, oz=b8t, pz=b8s, qz=ab9s, rz=ab9r, sz=b10r, tz=b10q, uz=ab11q, vz=ab11p, wz=b12p, xz=b12o, yz=ab27, z2=b26, b2A=abz, cA=bz, dA=b2z, eA=b2y, fA=ab3y, gA=ab3x, hA=b4x, iA=b4w, jA=ab5w, kA=ab5v, lA=b6v, mA=b6u, nA=ab7u, oA=ab7t, pA=b8t, qA=b8s, rA=ab9s, sA=ab9r, tA=b10r, uA=b10q, vA=ab11q, wA=ab11p, xA=b12p, yA=b12o, zA=ab27, A2=b26, bB=aA, cB=bA, dB=abz, eB=b2z, fB=b2y, gB=ab3y, hB=ab3x, iB=b4x, jB=b4w, kB=ab5w, lB=ab5v, mB=b6v, nB=b6u, oB=ab7u, pB=ab7t, qB=b8t, rB=b8s, sB=ab9s, tB=ab9r, uB=b10r, vB=b10q, wB=ab11q, xB=ab11p, yB=b12p, zB=b12o, AB=ab27, B2=b26>

P = {a, b2, b4, b6, b8, b10, b12, b14, b16, b18, b20, b22, b24, b26, d, abe, f, b2f, abg, ab3g, h, b2h, b4h, abi, ab3i, ab5i, j, b2j, b4j, b6j, abk, ab3k, ab5k, ab7k, l, b2l, b4l, b6l, b8l, abm, ab3m, ab5m, ab7m, ab9m, n, b2n, b4n, b6n, b8n, b10n, abo, ab3o, ab5o, ab7o, ab9o, ab11o, p, b2p, b4p, b6p, b8p, b10p, b12p, abq, ab3q, ab5q, ab7q, ab9q, ab11q, r, b2r, b4r, b6r, b8r, b10r, abs, ab3s, ab5s, ab7s, ab9s, t, b2t, b4t, b6t, b8t, abu, ab3u, ab5u, ab7u, v, b2v, b4v, b6v, abw, ab3w, ab5w, x, b2x, b4x, aby, ab3y, z, b2z, abA, B}

Phi = 1 a 1 b ab a 1 b ab c ac b3 d bd e b5 f ab6 g b7 h ab8 i b9 j ab10 k b11 l ab12 m b13 n ab14 o b15 p ab16 q b17 r ab18 s b19 t ab20 u b21 v ab22 w b23 x ab24 y b25 z ab26 A b27 B ab26

Monoid Structure

Idempotent  |G|  |Arch|
122
b26 *4418