Details Page for 0.3501

Complete Solution is Known:

Period:  
Preperiod:  
Quotient Size:   2050
P-Portion Size:   432
Tame?   No

MSV File: q-0.3501.msv

Growth Pattern:

Heap   Q-Size   P-Size
121
262
4144
6389
77017
810626
1024653
1142692
12774165
131174249
141382294
151650347
161714358
171826383
182050432

(Click on a heap to see details)

Details for Q12(0.3501):

Q = <a,b,c,d,e,f,g,h,i,j,k | a2=1, b3=b, b2c=c, c4=c3, b2d=d, c3d=c2d, cd2=d2, d3=ad2, b2e=e, c3e=bc3, c2de=bc2d, d2e=bd2, c2e2=c2, ce3=ce, e4=e2, b2f=f, cdf=df, d2f=ad2, def=bdf, c2f2=d2, df2=ad2, e2f2=f2, f3=acf2, b2g=g, c2g=bc3, cdg=bc2d, d2g=bd2, deg=cd, ce2g=cg, dfg=bdf, f2g=cef2, cg2=c3, eg2=bc3, dg3=bdg2, fg3=bfg2, g4=bg3, h=c, b2i=i, c3i=ad2, di=d2, e2fi=fi, fg2i=d2, i2=d2, b2j=j, c3j=c3, dj=dg2, ce2j=cj, e3j=ej, f2j=d2, cgj=bc2j, fg2j=c3f, g3j=bg2j, c2fij=abcef2i, g2ij=ad2, cj2=c3, ej2=bc2j, g2j2=g2j, fij2=acf2i, j3=g2j, b2k=k, c2k=c2ej, d2k=bd2, cdek=c2d, de2k=bcde2, dfk=bdf, f2k=bcf2, cgk=c3, g2k=bc3, cejk=bcjk, e2jk=jk, gjk=c2j, j2k=bc3, ck2=bc2ej, dek2=bc2d, e3k2=ek2, dgk2=cdk, egk2=c3, fgk2=fgj2, gik2=gij2, jk2=bc2ej, k3=bc3>

P = {a, b2, c, c2, c3, bd, acd, ac2d, d2, be, bce, bc2e, ade, e2, ce2, bde2, acde2, be3, ade3, f, acf, ac2f, ac3f, bdf, aef, bcef, abc2ef, e2f, ace2f, ae3f, f2, cf2, bef2, bcef2, bg, bcg, dg, eg, ceg, be2g, e3g, bfg, abcfg, aefg, acefg, be2fg, ae3fg, g2, bdg2, fg2, bg3, bi, aci, ac2i, aei, abc2ei, be2i, ace2i, ae3i, fi, c2fi, aefi, cefi, bf2i, acf2i, aef2i, abcgi, acegi, bcfgi, befgi, bg2i, j, cj, c2j, bej, bcej, bc2ej, e2j, afj, acfj, ac2fj, abefj, abcefj, abc2efj, ae2fj, bgj, egj, be2gj, bfgj, aefgj, abe2fgj, g2j, aij, acij, ac2ij, abceij, abc2eij, ae2ij, bfij, bcfij, efij, aegij, abe2gij, fgij, j2, fj2, bgj2, bfgj2, bij2, bk, bck, adk, ek, cek, bdek, be2k, bce2k, e3k, bfk, bcfk, efk, acefk, abe2fk, abce2fk, e3fk, gk, adgk, begk, e2gk, be3gk, afgk, befgk, ae2fgk, abe3fgk, beik, aceik, abe2ik, abce2ik, befik, bcefik, agik, ae2gik, abe3gik, bjk, bcjk, ejk, abfjk, abcfjk, aefjk, abijk, abcijk, aeijk, befijk, k2, bdk2, bek2, e2k2, fk2, abefk2, ae2fk2, bgk2, bik2, abeik2, ae2ik2, fik2}

Phi = 1 a b c d b2 e f g c i j k

Monoid Structure

Idempotent  |G|  |Arch|
122
b244
c34148
d2 *4576
e2812
bg3412
g2j420