Details Page for 0.3566

Complete Solution is Known:

Period:  
Preperiod:  
Quotient Size:   258
P-Portion Size:   2
Tame?   Yes

MSV File: q-0.3566.msv

Growth Pattern:

Heap   Q-Size   P-Size
121
262
5102
13182
48342
145662
3811302
14472582

(Click on a heap to see details)

Details for Q381(0.3566):

Q = <a,b,c,d,e,f,g | a2=1, b3=b, b2c=c, c2=b2, b2d=d, d2=b2, b2e=e, e2=b2, b2f=f, f2=b2, b2g=g, g2=b2>

P = {a, b2}

Phi = 1 a b b2 b c ac c bc ab2 ab ab2 b d ac abc bc abd cd ab2 b ab d bd ac bc abc cd b ab ab2 abd d bc abc ac bcd b cd ab2 abd bd bc ac abcd b abcd ab2 e abd bc ac ad ac abcd acd e acd d be c ac ce cd ae acd abcd be d be c bce abce ab2 b ae ac d bd bc abce ab2 cd bcd abcd ae ac bc abd ab2 ace ab2 b be e ac bd d bce ce ab2 cd cde cd bc ac d ce b abcd ab2 cd bc abd ac d ce ace ab2 cd e ae ad ac d ce bce cd ab2 ae e c ac de bce ce cd abcd abe be d bc abd ace cd f b abcd d abf bd abd ace bce b bcd be ae bd d ac ace ab abcd cd ab2 ae abd f d ac b abcd cd be bc f ad d ac abcd cf cd e ae be d ce ace bce cd cde abcde ae d abd ace bce abce acd abcd ae e be abd bce cd bce f bcf abcd be abcde bd bc abd f cd bcd be ae bd cf d ce ace bcd cd bcde bc abd abde d de abcd f abcde bc abd ae abd bcf b ace abf adf e ae f d f ace abde abf abcd e be abcf d abd ce bce ef abdf ae be cf abcdf abd abce bce f aef abcd be cf abf abce bce f acdf abcd be ae cf abd bce ace de aef be abcde ae cde acef abde ace ce abcd abd abcde ab2 f bdf d ce ace adf def e ae be acdf ce ace bce cf ef cde be bcef d ace bce abde cf ae abcd ae be adf bcdf ace abce acdf ef cde be cf bcdf de bce ace d f be abe cd cf bce ce de aef d e cd ae def bdef ce ace aef adf be ae f abcd acdf ce bdef adf bcdef e cd ae acdf de ce abde abd cde g be acdf bg de ce bce bcdef d ae be bdef abf ace ab2 bce acdf bdf abe abcd adf cd abde abd bcf abcf d ae be cd g abce ace acdf aef abef be ae g acef bce ace de ace cdef bc e cd b abcd de cf cg abef e ab2 f bcd bdef d cf bd acg abd be bcd abdef g ace bce bef d f abcde abf def cd ace abd abcf d ae abf abcd cd bce abd abcf ad d be ae ab2 bcdf cd ace bdf d cdef cg ae def cd bdef ace ac d bcdef ae bf f b ace cf d bc d be f cd abcd g bg cf d abd abf be cd abcd bg cf bce d ae f cd bcef cd ace bce d acdef acdf abe acdf cd abcd abce g bc ac d be ae abcd cd g abcf bc ac acdef bcdf ae ab2 abde abdf bcf ac abd abf acg bcg b cd abcf bdf cf bc abd ae f b abcd abcf cf ac bc bcdf cg ab2 cd bg g cf abd ac cg f be ab2 cd cf adf ac d ac f abcd ab2 cd adf abcf bc ac d cg b ab2 cd adf g bc d c f bcdf b cf bdf be ac d bc bf cd acdg b abcf bdef ac bc abf f cd f cd abcf adf d abeg abf cg ab2 cd ab2 bdf ae d ac f bcdf f cd ab2 acf abd bce ac cg ace abf ab2 cd ab2 cf d ac f abf abcd abf g cf abcf d bc d acdf abf abcd b bcf be acdg abd cg f bce g ag be cf d cg acg bf aceg b abcf adf abcf cf bc bce abf acdf b cd abcf ae d bce d bce ab2 cd ab2 cf ae cf ac d ace acg ceg cd ae be g ac ace bce abf adg ab2 cf be abcef ac ace abf bce abef bceg ae abcf abcde cg abd bce abf acdg cdg abcf cf abg abeg abg cd bdg cd ef abe ae cf cef bce f cd f abcde abcf cf eg d bce abf f ef cd be cf cef abeg abcg f ef cd ae cd cf d bdef d ce bcdf abef cd be cf ac bdef ade bce bcdef bef ae e abcde be cg abde abf bg bce bg abcde abcf beg acef adef abce acdf acdef ceg abcf adf bdef acef bcdf ace bcdef aef abef abcde ae d bce abde abceg f acdef abef cde aeg adef bdef de acdf ef abg abef cd cde cef bdef d acfg ceg ef cd abg cdeg abcef d de abde bce bcdef cd e abcde abcef adef abg abce abg ef acdef abcde bdef cd cef cd bce d ef abcd abe bcdg bdef def afg bcfg acdf abcf abcde adg adf cef bce ace g ceg be abef ab2 cg beg bdef abcef d acdef abef bcdfg cde adef abf abcef ce abg ef bef e afg eg acdeg abcd bg ceg bce cf cd afg acdeg bdef ace cef acfg abef ceg ef bcg f abcef cd adef bcdef abef d be cg bdef cd def cd bcdef abef f bcfg befg bcdeg abf bce cf dfg acdef be f cdfg adef def abcef abcd ce d abd bcdef abef adef bdef abcd abdfg d acdef adf abef ab2 bfg f acdf abg bcfg bcdef ae cg eg abcd f abcf g abg abef abd acdef abcg abcd cd adef g abef bcdef ef acdef bdg cd abcef bce adf g bcdef acdef acdf cg adg abf bdef dfg g abcf ac bcdef f abf cd bdef bdf de abd adeg bcdf bcdef cd abcd bdef bdf ac d ae bcdef cd cef f bdf bg abg d abef acdef abcg cd acdf cd g bcdef bcdg bcdef cg abcd f bdef g cd g bcdef d abcde acdf bdef cdfg abde cf g abcf d f abf f cd adf cf adf abcf d acdf abf bcdeg adef g abg abcf acdef acfg f abf cd afg bdef abcf adf acfg abd bcdf abcg f acdf bdef bdf d cf abef adg af f abcef afg g cf bc acfg cg f b afg adef cf acf acdeg abcg f cdf f bfg abg cf bc be abcg cg f bcdf cdfg acdg adf bdf be dfg bcdef bf cd bce g cf d dfg be acdf f abf g bfg bdeg cf d abd cg acdf cdfg afg ag bdef cf ae bce bcdf f acdf bdeg abcf cf adf cf abcg abf f abcde deg cdfg adf cf cfg bcfg bdef f fg bfg adf cf bdf bcdeg ace f cg abf bfg adf cf be bcfg be f bce abde bcdg cf abcf g abcf f cg f bcdf afg cf adf bcf bcdeg adg cd f abcg afg acdef abcd cf abeg cg abf f abcg acdg abcf g cf acdeg bcdeg abf acdf f adeg afg cde abd acfg acdeg abf acdf adg adeg bcdef abd abcf eg abdfg abcd acdf afg bcdef cf abd bdf cdeg dfg de f bcdf bcdef cf d abcf abcef cg f bf abd ceg g abcd cf eg adef bc abf bdeg acdef be cf abg bce adef bcdf f acdf acdef be g cf adf bce dfg f acdf bcdg bdf cf abd cf abcg af d acdef bcdef cde acf abcf eg ace abcd abcefg bdeg ae cde cf abcf abcef abcd f abf bcdf abd cf abg abcde bcfg f bcfg bdeg adeg abceg d cf bdef abcd cef cefg abf abd acdef be abcf bcdeg bdef cd abf adeg abef be abcf efg abcf cd abf cefg bcefg d abef aefg cf cd adef abcd f acdf ef abef abd cf adef abcef adef abcef f abf abef bcdef cf abcf cef de abcef f abf abef bcdef bfg abcf abcd abcef acefg cdfg aceg d ac d abcd adef cef adef abcdfg abef acdef ef acdeg bdef abcef cef abcdfg f abg aef ef abdfg cd cef abcef cdfg f be ef abd abcg bce cf cef f

Monoid Structure

Idempotent  |G|  |Arch|
122
b2 *128128