Details Page for 0.3712

Complete Solution is Known:

Period:  
Preperiod:  
Quotient Size:   3560
P-Portion Size:   417
Tame?   No

MSV File: q-0.3712.msv

Growth Pattern:

Heap   Q-Size   P-Size
121
262
7123
8245
9487
1112821
1240050
131752206
141944228
153560417

(Click on a heap to see details)

Details for Q15(0.3712):

Q = <a,b,c,d,e,f,g,h,i | a2=1, b4=b2, b2c=b3, c2=1, d4=d2, b3e=be, bce=b2e, bd2e2=be2, d3e2=de2, b2e4=e4, ce4=be4, d2e4=e4, e5=ae4, e4f=abe4, f2=1, b3g=bg, bcg=b2g, e4g=ade4, be2g2=be2, e3g2=d2e3, de2g3=de2g, g4=g2, b3h=bh, bch=b2h, be2h=be2, d2e2h=e2h, e3h=d2e3, e2g3h=e2gh, e2h2=e2g2h, h4=h3, b3i=bi, bci=b2i, d3i=di, b2de3i=de3i, cde3i=bde3i, d2e3i=b2e3i, e4i=be4, d2e2g2i=e2g2i, bg3i=bgi, dg3i=dgi, e2g3i=d2e2gi, b2ghi=ghi, cghi=bghi, e2ghi=b2e2gi, g3hi=ghi, b2h2i=h2i, ch2i=bh2i, d2h2i=h2i, g2h2i=h2i, b2i2=i2, ci2=bi2, d2i2=i2, e2i2=b2e2, g2i2=i2, h3i3=h3i, i4=i2>

P = {a, b2, c, ad, cd, ad2, b2d2, cd2, ad3, cd3, abe, abd2e, e2, b2e2, d2e2, ae3, ab2e3, ad2e3, e4, af, cf, adf, b2df, cdf, ad2f, cd2f, ad3f, b2d3f, cd3f, abdef, abd3ef, ace2f, de2f, b2de2f, be3f, ce3f, cd2e3f, abg, abd2g, eg, b2eg, d2eg, b2d2eg, abe2g, ade2g, de3g, b2de3g, abdfg, abd3fg, acefg, defg, b2defg, d3efg, b2d3efg, abde2fg, ad2e2fg, acde3fg, g2, b2g2, d2g2, b2d2g2, abeg2, adeg2, abd2eg2, ad3eg2, e2g2, d2e2g2, acfg2, dfg2, b2dfg2, d3fg2, b2d3fg2, abdefg2, ad2efg2, abd3efg2, ace2fg2, de2fg2, abg3, adg3, abd2g3, ad3g3, eg3, b2eg3, d2eg3, b2d2eg3, abdfg3, ad2fg3, abd3fg3, acefg3, defg3, b2defg3, d3efg3, b2d3efg3, h, b2h, d2h, b2d2h, aeh, ab2eh, ad2eh, ab2d2eh, e2h, acfh, dfh, b2dfh, d3fh, b2d3fh, befh, cefh, bd2efh, cd2efh, de2fh, abgh, adgh, abd2gh, ad3gh, bdegh, cdegh, bd3egh, cd3egh, ace2gh, abdfgh, ad2fgh, abd3fgh, g2h, b2g2h, d2g2h, b2d2g2h, aeg2h, ab2eg2h, abd2eg2h, acd2eg2h, e2g2h, dfg2h, b2dfg2h, d3fg2h, b2d3fg2h, befg2h, cefg2h, abd3efg2h, acd3efg2h, de2fg2h, abg3h, acg3h, abd2g3h, acd2g3h, bdeg3h, cdeg3h, bd3eg3h, cd3eg3h, abdfg3h, acdfg3h, abd3fg3h, acd3fg3h, bd2efg3h, cd2efg3h, h2, b2h2, d2h2, b2d2h2, aeh2, ab2eh2, ad2eh2, ab2d2eh2, dfh2, b2dfh2, d3fh2, b2d3fh2, befh2, cefh2, bd2efh2, cd2efh2, abgh2, acgh2, abd2gh2, acd2gh2, degh2, b2degh2, d3egh2, b2d3egh2, abdfgh2, acdfgh2, abd3fgh2, acd3fgh2, g2h2, b2g2h2, d2g2h2, b2d2g2h2, aeg2h2, ab2eg2h2, ad2eg2h2, ab2d2eg2h2, dfg2h2, b2dfg2h2, d3fg2h2, b2d3fg2h2, befg2h2, cefg2h2, ad3efg2h2, ab2d3efg2h2, abg3h2, acg3h2, abd2g3h2, acd2g3h2, deg3h2, b2deg3h2, d3eg3h2, b2d3eg3h2, abdfg3h2, acdfg3h2, abd3fg3h2, acd3fg3h2, d2efg3h2, b2d2efg3h2, h3, b2h3, d2h3, b2d2h3, aeh3, ab2eh3, ad2eh3, ab2d2eh3, dfh3, b2dfh3, d3fh3, b2d3fh3, befh3, cefh3, bd2efh3, cd2efh3, abgh3, acgh3, abd2gh3, acd2gh3, degh3, b2degh3, d3egh3, b2d3egh3, abdfgh3, acdfgh3, abd3fgh3, acd3fgh3, g2h3, b2g2h3, d2g2h3, b2d2g2h3, aeg2h3, ab2eg2h3, ad2eg2h3, ab2d2eg2h3, dfg2h3, b2dfg2h3, d3fg2h3, b2d3fg2h3, befg2h3, cefg2h3, ad3efg2h3, ab2d3efg2h3, abg3h3, acg3h3, abd2g3h3, acd2g3h3, deg3h3, b2deg3h3, d3eg3h3, b2d3eg3h3, abdfg3h3, acdfg3h3, abd3fg3h3, acd3fg3h3, d2efg3h3, b2d2efg3h3, abi, aci, abd2i, acd2i, ei, b2ei, d2ei, b2d2ei, abe2i, ade2i, ace3i, de3i, abdfi, acdfi, defi, b2defi, ae2fi, abde2fi, ad2e2fi, e3fi, b2e3fi, gi, b2gi, d2gi, b2d2gi, abegi, adegi, abd2egi, e2gi, b2e2gi, d2e2gi, ab2e3gi, dfgi, b2dfgi, aefgi, abdefgi, ad2efgi, de2fgi, b2de2fgi, ade3fgi, abg2i, adg2i, abd2g2i, eg2i, b2eg2i, d2eg2i, b2d2eg2i, ade2g2i, afg2i, abdfg2i, ad2fg2i, defg2i, b2defg2i, ae2fg2i, g3i, aefg3i, abhi, adhi, abd2hi, bdehi, cdehi, ade2hi, afhi, abdfhi, ad2fhi, ae2fhi, ghi, d2ghi, abeghi, abd2eghi, dfghi, abdefghi, abg2hi, abd2g2hi, bdeg2hi, abdfg2hi, bd2efg2hi, abh2i, deh2i, abdfh2i, efh2i, gh2i, aegh2i, dfgh2i, adefgh2i, abh3i, deh3i, abdfh3i, efh3i, gh3i, aegh3i, dfgh3i, adefgh3i, i2, abei2, dfi2, abdefi2, abgi2, egi2, abdfgi2, defgi2, hi2, aehi2, dfhi2, befhi2, abghi2, bdeghi2, abdfghi2, h2i2, aeh2i2, dfh2i2, befh2i2, abgh2i2, degh2i2, abdfgh2i2, h3i2, aeh3i2, dfh3i2, befh3i2, abgh3i2, degh3i2, abdfgh3i2, abi3, ei3, abdfi3, defi3, gi3, abegi3, dfgi3, abdefgi3, abhi3, bdehi3, abdfhi3, ghi3, aeghi3, dfghi3, befghi3, abh2i3, deh2i3, abdfh2i3, efh2i3, gh2i3, aegh2i3, dfgh2i3, abdefgh2i3}

Phi = 1 a b ab a 1 ab c d e c f g h ai2 i

Monoid Structure

Idempotent  |G|  |Arch|
188
b2816
d21624
b2d21648
e4 *81968
g21624
b2g21624
d2g23272
b2d2g23272
h3824
b2h3824
d2h31672
b2d2h31672
g2h31672
b2g2h31672
d2g2h332216
b2d2g2h332216
i264216
h3i264320