Details Page for 0.3751

Complete Solution is Known:

Period:  
Preperiod:  
Quotient Size:   690
P-Portion Size:   56
Tame?   No

MSV File: q-0.3751.msv

Growth Pattern:

Heap   Q-Size   P-Size
121
262
6123
11186
135210
145812
157413
1711218
1826430
2035636
2169056

(Click on a heap to see details)

Details for Q21(0.3751):

Q = <a,b,c,d,e,f,g,h,i,j,k,l,m | a2=1, b4=b2, c4=c2, bd=ab2, cd=ab3c, d2=b2, be=b2, ce=bc, de=ab2, e2=b2, b2f=b2c, cf=b2c2, df=abf, ef=b3c, bf2=b3c2, f4=f2, b2g=ab3c, c3g=cg, f2g=ab3c3, bg2=bc2, c2g2=g2, dg2=ab3c2, eg2=bc2, fg2=b2c3, g3=c2g, b2ch=ch, c2h=b2c3, dh=abh, eh=b3h, bfh=bch, cgh=ab3c3, fgh=ab3c3, g2h=b2c3, bh2=b3, ch2=b2c, f2h2=f3h, gh2=ab3c, fh3=fh, h4=h2, b2ci=ci, di=abi, ei=b3i, bfi=bci, cgi=abc2i, fgi=abc2i, g2i=c2i, b3hi=bhi, f2hi=f3i, ghi=abchi, fh2i=fi, h3i=hi, b3i2=bi2, c2i2=b2i2, f2i2=i2, gi2=abci2, hi2=fi2, i4=i2, b2j=b2c, bcj=bc2, c3j=cj, dj=ab3c, ej=bj, bfj=b3c2, f3j=fj, fgj=ab3c3, g2j=c2j, bhj=bch, chj=b2c3, fhj=f2j, ghj=ab3c3, h3j=hj, bij=bci, cij=c2i, gij=abc2i, h2ij=ij, bj2=bc2, cj2=c2j, fj2=b2c3, gj2=cgj, hj2=b2c3, ij2=c2i, j3=c2j, b3k=bk, dk=abk, ek=bk, bfk=bck, bgk=ab2ck, fgk=abc2k, g2k=c2k, f2hk=f3k, ghk=abchk, fh2k=fk, h3k=hk, gik=abcik, h2ik=ik, bi2k=bi3, ci2k=ci3, bjk=bck, cjk=b2c2k, gjk=abc2k, h2jk=jk, j2k=b2c2k, k2=b2i2, b2l=l, c2l=l, dl=abl, el=bl, fl=cl, gl=abcl, hl=cl, i2l=bi2, jl=cl, l2=b2i2, b2cm=cm, dm=abm, em=b3m, bfm=bcm, cgm=abc2m, fgm=abc2m, g2m=c2m, b3hm=bhm, f2hm=f3m, ghm=abchm, b3im=bim, gim=abcim, h2im=im, i2m=fi2, bjm=bcm, cjm=c2m, gjm=abc2m, h2jm=jm, j2m=c2m, gkm=abckm, h2km=km, b3m2=bm2, c2m2=b2i2, f2m2=i2, gm2=abcm2, fh2m2=fm2, h3m2=hm2, fjm2=fi2j, lm2=bi2, m3=fi2>

P = {a, b2, ac, ac2, b2c2, ac3, f, af2, f3, acg, fg, ag2, h, ch, afh, af3h, gh, ah2, bgi, i2, b2i2, abgj, ac2gj, aij, af2ij, ai3j, j2, ck, c3k, bik, c2ik, f2ik, bhik, i3k, bl, cikl, cm, c3m, afm, gm, ahm, b2hm, afijm, ahijm, chikm, fhikm, hijkm, bclm, am2, b2m2, chm2, fhm2, h2m2, aijm2, ikm2, b2ikm2}

Phi = 1 a b ab a b c d e ab2 d f b3 g h i ab2 j k ab2 l m

Monoid Structure

Idempotent  |G|  |Arch|
122
b2816
c246
b2c2854
f246
g2810
f3h48
h246
i2870
b2i2 *16498
cj814