Details Page for 0.4104

Complete Solution is Known:

Period:  
Preperiod:  
Quotient Size:   1132
P-Portion Size:   181
Tame?   No

MSV File: q-0.4104.msv

Growth Pattern:

Heap   Q-Size   P-Size
221
562
11123
13245
15487
2943256
3160087
33860152
351034171
371132181

(Click on a heap to see details)

Details for Q33(0.4104):

Q = <a,b,c,d,e,f,g,h,i,j,k,l,m | a2=1, b4=b2, b2c2=b2, bc3=bc, c4=c2, b2d=ab3, bd3=bd, d4=d2, b3e=be, bc2e=be, c3e=ce, bde=ab2e, d3e=de, b2e2=e2, c2e2=e2, de2=abe2, e3=ae2, bf=ab2, c3f=cf, d3f=df, ef=abe, f2=b2, bc2g=bg, c3g=cg, bd2g=bg, d3g=dg, c2eg=eg, d2eg=eg, e2g=ace2, fg=abg, bg2=abcg, c2g2=g2, d2g2=g2, eg2=aceg, g3=acg2, b2h=ab3, bd2h=bh, d3h=dh, beh=ab2e, d2eh=eh, e2h=abe2, d2fh=fh, bgh=bdg, cgh=adg2, d2gh=gh, egh=deg, g2h=dg2, bh2=bdh, d2h2=h2, eh2=deh, fh2=dfh, gh2=dgh, h3=dh2, b2i=b3, bc2i=bi, c3i=ci, bd2i=bi, d3i=di, bei=b2e, c2ei=ei, d2ei=ei, e2i=be2, c2fi=fi, d2fi=fi, gi=bg, bhi=ab3, d2hi=hi, ehi=ab2e, fhi=b3, h2i=adfh, i2=afi, b2j=ab2, bc2j=bj, c3j=cj, d2j=j, ej=ab2e, fj=b3, gj=bdg, bij=fi, c2ij=ij, hij=afi, j2=bhj, bd2k=bk, d3k=dk, d2ek=ek, e2k=ace2, d2fk=fk, bgk=bceg, d2gk=gk, egk=ae2, g2k=ab2eg, d2hk=hk, d2ik=ik, bhjk=c2fhk, bk2=bcek, ck2=adeik, d2k2=k2, ek2=ae2, fk2=abcek, hk2=abcek, ik2=bcek, jk2=ab2cek, k3=gk2, b2l=ab3cg, bcdl=bg, c2d2l=adg2, bel=ab2ceg, cdel=eg, e2l=be2, dfl=abdl, gl=acd2l, hl=dl, il=afl, jl=bdl, bckl=ab2ceg, c2dkl=b2eg, cekl=be2, fkl=abkl, k2l=be2, l2=ad3l, b2m=b3k, c3m=cm, bcdm=cdfhk, bem=b2ek, c2em=em, dem=ac2dehk, e2m=abce2, dfm=abdm, gm=ac3kl, bhm=bdm, ehm=ac2dehk, fhm=abdm, h2m=dhm, bim=b3k, cdim=acdhik, eim=b2ek, fim=ab3k, him=bdm, bjm=ab2k, cjm=bcjk, hjm=bd2m, ijm=fik, bckm=b2ek, cdkm=ab2ek, ekm=abe2, fkm=abkm, hkm=dkm, ikm=bkm, jkm=bdkm, k2m=abce2, cdlm=ac3kl, cklm=elm, bc2m2=bm2, bdm2=ab2cek, cdm2=ackm, d2m2=bkm, em2=acelm, c2fm2=fm2, hm2=dm2, im2=afm2, jm2=ab2cek, km2=aelm, blm2=celm, flm2=ae2, m3=aclm2>

P = {a, b2, ac, ac2, ac3, d, cd, c2d, c3d, ad2, acd2, ac2d2, ac3d2, d3, cd3, c2d3, c3d3, be, e2, g, cg, ab2cg, c2g, adg, acdg, ac2dg, d2g, cd2g, c2d2g, abceg, ag2, acg2, dg2, cdg2, h, ch, c2h, c3h, adh, acdh, ac2dh, ac3dh, d2h, cd2h, c2d2h, c3d2h, agh, dgh, ah2, ach2, ac2h2, ac3h2, dh2, cdh2, c2dh2, c3dh2, bi, ei, afi, bdj, bhj, dij, k, ck, ab2ck, c2k, c3k, abdk, abc2dk, d2k, cd2k, c2d2k, c3d2k, abcek, adek, ac2dek, dfk, c2dfk, achk, ac3hk, dhk, cdhk, c2dhk, c3dhk, ghk, h2k, ch2k, c2h2k, c3h2k, acdh2k, ac3dh2k, adik, acdik, ac2dik, cdjk, chjk, cdh2jk, acijk, dgk2, al, acl, ac2l, ac3l, dl, cdl, c2dl, c3dl, ad2l, acd2l, d3l, cd3l, bkl, c3kl, adkl, ekl, m, cm, c2m, adm, acdm, ac2dm, d2m, cd2m, c2d2m, ad3m, acd3m, ac2d3m, ahm, achm, ac2hm, dhm, cdhm, c2dhm, ad2hm, acd2hm, ac2d2hm, akm, ac2km, bdkm, ad2km, lm, clm, c2lm, adlm, d2lm, ad3lm, am2, acm2, ac2m2, dm2, alm2, ac2lm2}

Phi = 1 1 a a 1 b a ab b a ab c a d c e d f e g f ab2 g h ab2 i h j i k j l k m l

Monoid Structure

Idempotent  |G|  |Arch|
122
b28174
c246
d246
c2d2818
e2 *8528
ab2cg832
g2846
h2410
c2h2830
ad3l48