Details Page for 0.4126

Complete Solution is Known:

Period:  
Preperiod:  
Quotient Size:   1426
P-Portion Size:   113
Tame?   No

MSV File: q-0.4126.msv

Growth Pattern:

Heap   Q-Size   P-Size
221
462
7102
9184
10204
13305
14466
15588
17628
18668
198611
2216616
2617017
2818618
2926624
3056642
3168653
3272256
3372657
3475858
3583863
361404110
371426113

(Click on a heap to see details)

Details for Q37(0.4126):

Q = <a,b,c,d,e,f,g,h,i,j,k,l,m,n,o,p,q,r,s,t,u,v,w,x,y,z | a2=1, b4=b2, b2c=c, c4=ac3, bd=ab, cd=ac, d3=ad2, b3e=be, c2e=ace, de=ae, e2=ac3, b3f=bf, cf=bce, d2f=adf, b2ef=ef, b2f2=f2, df2=af2, ef2=ace, f3=abce, b3g=bg, c2g=abc3, dg=ag, b2eg=eg, ceg=bce, f2g=abc3, g2=ac3, b2h=h, ch=cg, dh=ah, eh=eg, gh=ac3, h2=ac3, b2i=i, ci=c2, di=ai, ei=ce, fi=bce, gi=cg, hi=cg, i2=ac3, b2j=j, cj=ac3, dj=aj, ej=ce, fj=bce, gj=bc3, hj=af2h, ij=ac3, j2=ac3, b2k=k, ck=abce, dk=ak, ek=bc3, f2k=bce, hk=abeg, ik=abce, jk=abce, k2=ac3, bl=be, cl=ce, dl=al, efl=abce, f2l=ace, egl=abc3, hl=eg, il=ce, jl=ce, kl=bc3, l2=ac3, cm=abefg, dm=am, em=eg, f2m=abc3, bgm=abc3, fgm=abce, hm=ac3, im=abefg, jm=bc3, km=gk, lm=gl, m2=gm, dn=an, n4=n2, b2o=o, co=abce, do=ao, eo=bc3, f2o=bce, go=gk, ho=ce, io=abce, jo=abce, ko=ac3, lo=bc3, mo=ce, o2=ac3, b3p=bp, cp=ce, dp=ap, ep=el, fp=f2h, gp=abce, hp=abce, ip=ce, jp=ce, kp=bc3, lp=ac3, mp=abce, op=bc3, p2=ac3, b2q=q, c3q=ac2q, dq=aq, efq=abcq, f2q=c2q, gq=bc2q, hq=bc2q, fkq=jq, lq=eq, mq=bc2q, cn2q=cq, en2q=eq, fn2q=fq, jn2q=jq, kn2q=kq, n3q=nq, oq=bceq, pq=aceq, q2=bc2q, b3r=br, c2r=acr, dr=ar, b2er=er, cer=aer, efr=abcr, f2r=acr, b2gr=gr, cgr=bcr, egr=ber, hr=abcr, ir=cr, jr=cr, kr=aber, lr=er, mr=abcr, b2nr=nr, gnr=abcnr, cn2r=cr, en2r=er, n3r=nr, or=aber, pr=er, qr=c2nq, b2r2=r2, cr2=ar2, fr2=ber2, gr2=br2, n2r2=r2, r3=nr2, c2s=c3, ds=as, b2es=es, ces=ace, b2fs=fs, efs=abcs, f2s=c3, cgs=befg, egs=aeg, is=cs, js=efg, gks=beg, ls=es, fms=fhs, gms=ael, cns=befn, ens=ab2en, ps=ce, cqs=acq, eqs=aeq, kqs=abceq, n2qs=qs, b2rs=rs, crs=acr, ers=aer, nrs=anr, r2s=ar2, s2=ab2s, b2t=t, c2t=abf2h, dt=at, et=abeg, f2t=c3, cgt=f2h, fgt=ce, fht=ce, jt=bf2h, kt=bp, lt=abeg, mt=af2h, ot=abce, pt=ce, cqt=c2q, fqt=bceq, iqt=ajq, n2qt=qt, rt=cr, cst=aefg, gst=abc3, hst=abc3, qst=c2q, ct2=c3, ft2=abce, gt2=abc3, ht2=abc3, it2=abf2h, qt2=c2q, st2=c3, t3=c3, b3u=bu, cu=abce, du=au, eu=bc3, f2u=bce, b2gu=gu, hu=ce, iu=abce, ju=abce, ku=ac3, lu=bc3, mu=ce, nu=bcen, ou=ac3, pu=bc3, qu=bceq, ru=aber, b2su=su, tu=abce, u2=ac3, bv=abce, cv=ce, dv=av, ev=el, fv=abc3, gv=abce, hv=abce, iv=ce, jv=ce, kv=bc3, lv=ac3, mv=abce, ov=bc3, pv=ac3, qv=aceq, rv=er, sv=ce, tv=ce, uv=bc3, v2=ac3, b2w=w, cw=aw, dw=aw, fw=bew, gw=bw, hw=bw, iw=aw, jw=aw, kw=abew, lw=ew, mw=bw, ow=abew, pw=ew, qw=aceq, n2rw=rw, sw=aw, tw=aw, uw=abew, vw=ew, w2=bc2q, b2x=x, cx=ax, dx=ax, fx=bex, gx=bx, hx=bx, ix=ax, jx=ax, kx=abex, lx=ex, mx=bx, n2x=x, ox=abex, px=ex, qx=bc2q, r2x=nrx, sx=ax, tx=ax, ux=abex, vx=ex, rwx=nwx, x2=bc2q, b3y=by, dy=ay, b2ey=ey, b2fy=fy, efy=bc2y, f2y=ac3y, b2gy=gy, cgy=abc2y, egy=abcey, fhy=acey, jy=ac2y, ky=abey, ly=ey, my=bc2y, b2ny=ny, c2ny=acny, ceny=aeny, hny=abcny, iny=cny, n2y=nr2, oy=bcey, py=acey, cqy=ac2nq, eqy=acenq, fqy=abcenq, nqy=c2q, ry=r2, b2sy=sy, csy=ac3y, esy=cey, hsy=bc3y, nsy=any, qsy=ac2nq, ty=c3y, uy=bcey, vy=acey, xy=rx, y2=r2, b3z=bz, cz=ac3, dz=az, ez=ce, fz=bce, b2gz=gz, hz=gz, iz=ac3, jz=ac3, kz=abce, lz=ce, mz=gz, b2nz=nz, gnz=af2hn, oz=abce, pz=ce, qz=ac2q, rz=cr, sz=ac3, tz=ac3, uz=abce, vz=ce, wz=aw, xz=ax, yz=c3y, z2=ac3>

P = {a, b2, abc, c2, ac3, d2, af, ef, f2, bg, abfh, abi, abfgk, al, fgl, bm, b3m, gm, ab2n, bcn, afn, aefn, bin, bjn, bfkn, afln, n2, b2n2, abcn2, c2n2, ac3n2, efn2, f2n2, bgn2, abfhn2, abin2, abfgkn2, aln2, fgln2, bmn2, b3mn2, gmn2, ab2n3, bcn3, afn3, aefn3, bin3, bjn3, bfkn3, afln3, ap, an2p, bq, bc2q, bn2q, ab2r, afr, abenr, r2, ab2s, bcs, abgs, bfks, ams, ab3ms, ns, b2ns, bfgns, ab2n2s, abgn2s, bfkn2s, amn2s, ab3mn2s, n3s, b2n3s, bfgn3s, abqs, bfgrs, abct, abht, abit, ant, abint, abcn2t, abhn2t, abin2t, an3t, abin3t, t2, n2t2, ab2fu, abfgu, fsu, av, an2v, ew, en2w, er2w, aex, bnrx, anwx, ab2y, cy, ac2y, abgy, iy, abeny, abqy, biqy, bfgsy, ab2z, abgz, abn2z}

Phi = 1 1 a a abe abe be b b c d bce e f g h i j k l b2e m n i aefg o p b2e q r s t u v w x y z

Monoid Structure

Idempotent  |G|  |Arch|
122
b246
ac38276
d224
n246
b2n2818
ac3n216672
bc2q *16240
r216170
ab2s48
ab2n2s824