Details Page for 0.5303

Complete Solution is Known:

Period:  
Preperiod:  
Quotient Size:   2652
P-Portion Size:   374
Tame?   No

MSV File: q-0.5303.msv

Growth Pattern:

Heap   Q-Size   P-Size
121
362
5102
10266
115813
1216223
1319426
1443651
1579495
162652374

(Click on a heap to see details)

Details for Q16(0.5303):

Q = <a,b,c,d,e,f,g,h,i,j,k,l | a2=1, b4=b2, c4=c2, b2d=ab2, bd3=bd, d4=d2, be=b2, d2e=e, e2=b2, bf=ab3, d3f=df, ef=ab3, df2=af2, f3=ab2, bc2g3=bc2g, c2d2g3=c2d2g, c2eg3=c2eg, c2fg3=c2fg, bg4=bg2, c2g4=c2g2, eg4=eg2, f2g4=f2g2, g5=g3, b2h=b3, d3h=dh, fh=ab3, c2g3h=c2gh, g4h=g2h, bh2=b3, d2h2=h2, eh2=b3, gh2=b2g, h3=b3, bi=ab2, d2i=i, ei=ab2, fi=b3, c2g3i=c2gi, g4i=g2i, h2i=ab3, i2=b2, bc3j=bcj, bcd2j=abcdj, d3j=dj, c3ej=cej, c3fj=cfj, f2j=b2j, c3gj=cgj, bd2gj=abdgj, cg3j=cgj, g4j=g2j, c3hj=chj, bd2hj=abdhj, ehj=dfj, h2j=b2j, c3ij=cij, dij=aij, hij=ab2j, b3j2=bj2, b2cj2=cj2, c3j2=cj2, bdj2=abj2, cdj2=acj2, d2j2=j2, ej2=bj2, fj2=ab2j2, b2gj2=gj2, dgj2=agj2, cg2j2=cj2, g3j2=gj2, hj2=bj2, ij2=abj2, b2j3=j3, c2j3=j3, dj3=aj3, gj3=cj3, j4=cj3, b2k=ab2, bd2k=bk, d2fgk=fgk, d2hk=hk, dik=aik, hik=af2k, bcjk=ab3cj, c3jk=cjk, ejk=bjk, fjk=b2j, bgjk=ab3gj, hjk=bjk, bj2k=abj2, cj2k=acj2, gj2k=agj2, j3k=aj3, k2=b2, bdl=ab3l, el=b3l, d2fl=adfl, f2l=b2l, b2c2g2l=b2c2l, dhl=ab3l, h2l=b2l, il=ab3l, c3jl=cjl, djl=ab2jl, cg2jl=cjl, bhjl=afjl, b2j2l=j2l, j3l=aj3, bkl=ab3l, d3kl=ad2kl, dfkl=afkl, hkl=ab3l, jkl=fjl, bl2=bcj3, d3l2=ad2l2, fl2=acj3, cg4l2=cg2l2, hl2=bcj3, jl2=j3, l3=acj3>

P = {a, b2, c2, b2c2, ad, ac2d, d2, c2d2, ad3, ac2d3, cf, c3f, cdf, c3df, cd2f, c3d2f, f2, c2f2, cg, b2cg, c3g, b2c3g, acdg, ac3dg, cd2g, c3d2g, acd3g, ac3d3g, fg, c2fg, dfg, c2dfg, d2fg, c2d2fg, cf2g, c3f2g, g2, b2g2, c2g2, b2c2g2, adg2, ac2dg2, d2g2, c2d2g2, ad3g2, ac2d3g2, afg2, ac2fg2, ad2fg2, ac2d2fg2, f2g2, c2f2g2, cg3, b2cg3, c3g3, acdg3, ac3dg3, cd2g3, acd3g3, fg3, dfg3, d2fg3, cf2g3, g4, adg4, d2g4, ad3g4, afg4, ad2fg4, h, bch, bc3h, adh, bcdh, bc3dh, d2h, bcd2h, bc3d2h, ceh, c3eh, cdeh, c3deh, bgh, bc2gh, bdgh, bc2dgh, bd2gh, bc2d2gh, egh, c2egh, degh, c2degh, acg2h, ac3g2h, abdg2h, abc2dg2h, acd2g2h, ac3d2g2h, aceg2h, ac3eg2h, bg3h, bdg3h, bd2g3h, eg3h, deg3h, h2, c2h2, adh2, ac2dh2, ahi, ac2hi, dhi, c2dhi, cdghi, c3dghi, ag2hi, ac2g2hi, dg2hi, c2dg2hi, cdg3hi, bj, b2cj, abdj, ac3dj, bd2j, ej, adej, acfj, acd2fj, b2gj, b2c2gj, ac2dgj, afgj, ac2fgj, ad2fgj, ac2d2fgj, bcg2j, b3cg2j, abcdg2j, acdeg2j, b2g3j, adg3j, afg3j, ad2fg3j, acdhj, adghj, ac2dghj, cg2hj, cd2g2hj, adg3hj, acg2ij, j2, b2j2, c2j2, adj2, cgj2, g2j2, cj3, ack, ac3k, cdk, c3dk, acd2k, ac3d2k, cd3k, c3d3k, afk, ac2fk, adfk, ac2dfk, acf2k, ac3f2k, agk, ac2gk, dgk, c2dgk, ad2gk, ac2d2gk, d3gk, c2d3gk, cfgk, c3fgk, acdfgk, ac3dfgk, af2gk, ac2f2gk, acg2k, ac3g2k, cdg2k, c3dg2k, acd2g2k, ac3d2g2k, cd3g2k, c3d3g2k, adfg2k, ac2dfg2k, acf2g2k, ac3f2g2k, ag3k, ac2g3k, dg3k, c2dg3k, ad2g3k, d3g3k, cfg3k, acdfg3k, af2g3k, acg4k, cdg4k, acd2g4k, cd3g4k, adfg4k, abhk, abc2hk, cdhk, c3dhk, aehk, ac2ehk, abcghk, abc3ghk, dghk, bcdghk, bc3dghk, cdeghk, c3deghk, abg2hk, abc2g2hk, aeg2hk, ac2eg2hk, abcg3hk, dg3hk, bcdg3hk, cdeg3hk, ah2k, ac2h2k, acjk, bdjk, acd2jk, agjk, ac2gjk, ad2gjk, ac2d2gjk, ag3jk, ad2g3jk, aj2k, al, ab2l, ac2l, ab2c2l, ad2l, ac2d2l, fl, c2fl, adfl, ac2dfl, acgl, ab2cgl, ac3gl, ab2c3gl, acd2gl, ac3d2gl, cfgl, c3fgl, acdfgl, ac3dfgl, g2l, ab2g2l, c2g2l, dg2l, c2dg2l, ad2g2l, ac2d2g2l, d3g2l, c2d3g2l, adfg2l, ac2dfg2l, ag3l, abcg3l, ab3cg3l, ac3g3l, g4l, dg4l, ad2g4l, d3g4l, adfg4l, abhl, abc2hl, abcghl, abc3ghl, ag2hl, ac2g2hl, acg3hl, acjl, ab2cjl, cfjl, gjl, ab2gjl, c2gjl, ab2c2gjl, abg3jl, ab3g3jl, aghjl, ac2ghjl, ag3hjl, abj2l, abc2j2l, acgj2l, ag2j2l, kl, c2kl, adkl, ac2dkl, d2kl, c2d2kl, cgkl, c3gkl, acdgkl, ac3dgkl, cd2gkl, c3d2gkl, adg2kl, ac2dg2kl, d2g2kl, c2d2g2kl, acfg2kl, ac3fg2kl, c3g3kl, ac3dg3kl, adg4kl, d2g4kl, l2, c2l2, adl2, ac2dl2, d2l2, c2d2l2, cgl2, c3gl2, acdgl2, ac3dgl2, cd2gl2, c3d2gl2, g2l2, c2g2l2, adg2l2, ac2dg2l2, d2g2l2, c2d2g2l2, cg3l2, c3g3l2, acdg3l2, ac3dg3l2, cd2g3l2, g4l2, adg4l2, d2g4l2, akl2, ac2kl2, dkl2, c2dkl2, ad2kl2, ac2d2kl2, acgkl2, ac3gkl2, cdgkl2, c3dgkl2, acd2gkl2, ac3d2gkl2, ag3kl2, ac2g3kl2, dg3kl2, ad2g3kl2, dg4kl2, ad2g4kl2}

Phi = 1 a a b b c 1 d ab e f g h i j k l

Monoid Structure

Idempotent  |G|  |Arch|
122
b2492
c246
b2c28276
d246
c2d2818
b2g28264
c2g2820
b2c2g216600
c2d2g21652
g448
d2g4824
cj3 *81284