Details Page for 0.5424

Complete Solution is Known:

Period:  
Preperiod:  
Quotient Size:   2034
P-Portion Size:   222
Tame?   No

MSV File: q-0.5424.msv

Growth Pattern:

Heap   Q-Size   P-Size
121
462
7102
9285
10326
116813
1223228
1333638
1434841
1540848
161628167
172034222

(Click on a heap to see details)

Details for Q16(0.5424):

Q = <a,b,c,d,e,f,g,h,i,j,k | a2=1, b4=b2, b2c=c, c4=c2, c2d=c3, cd2=c, d3=d, be=ab3, ce=ac, e2=b2, c2f=bc3, bd2f=bf, cf2=c3, bf3=c3, df4=c3, f6=f4, c2g=abc3, bd2g=bg, d2g2=g2, b2f2g2=c2, ef2g2=ad2ef3g, f3g2=bdf2g2, b3g3=bg3, cg3=abcdg2, eg3=ab2g3, fg3=abdfg2, g4=abdg3, b2h=b3, ch=bc, eh=ab3, d2fh=fh, f4h=bc2, d2gh=gh, f3gh=def3, bg2h=aeg2, h2=b2, b2i=b3, ci=bc, di=bd, fi=bf, gi=bg, hi=bh, bi2=aei, ei2=abi, i4=i2, b3j=bj, cj=ac, bfj=ab3f, df2j=ab2df2, ef3j=ef4g, f5j=f3j, b2gj=gj, d2gj=gj, egj=agj, fgj=ab2fg, g2j=ab2g2, hj=bj, ij=bj, b2j2=j2, d2j2=j2, ej2=aj2, fj2=b2f, j3=aj2, c2k2=c2, f4k2=f4, cg2k2=cg2, b2fg2k2=b2fg2, bg3k2=bg3, f3jk2=f3j, b3dk3=bdk3, b3fk3=bfk3, ef3k3=ef5k, b3gk3=bgk3, degk3=ab2dgk3, b2g2k3=g2k3, eg2k3=ag2k3, fg2k3=b2fg2k, g3k3=b2g3k, hk3=b3k3, eik3=abk3, i3k3=ik3, bk4=aeik2, ck4=ck2, f3k4=f5, dgk4=b2dgk2, g2k4=b2g2k2, ik4=i3k2, jk4=jk2, dek5=dek3, k6=k4>

P = {a, b2, c2, ad, bcd, ad2, b2d2, de, bcf, b2df, ef, d2ef, f2, b2f2, d2f2, ef3, f4, ef5, cg, bdg, b3dg, bfg, b3fg, adef2g, ad2f3g, g2, b2g2, abcdg2, aeg2, dfg2, b2dfg2, adefg2, f2g2, abdg3, bh, bd2h, bdfh, bf2h, df3h, dgh, fgh, af2g2h, adg3h, ai, ai2, ai3, bj, ab2d2j, adfj, af2j, af4j, j2, ak, adk, ad2k, dek, efk, d2efk, af2k, ad2f2k, ef3k, af4k, ef5k, cdgk, bdfgk, b3dfgk, aef2gk, ad2ef2gk, f3gk, d2f3gk, f5gk, abcg2k, dg2k, b2dg2k, adeg2k, fg2k, b2fg2k, aefg2k, abg3k, dfghk, adf2g2hk, ag3hk, ai2k, d2jk, adejk, dfjk, aefjk, f2jk, f4jk, ak2, b2k2, adk2, bcdk2, ad2k2, b2d2k2, dek2, bcfk2, b2dfk2, efk2, d2efk2, f2k2, b2f2k2, d2f2k2, ef3k2, cgk2, bfgk2, b3fgk2, adef2gk2, ad2f3gk2, g2k2, b2g2k2, aeg2k2, dfg2k2, adefg2k2, f2g2k2, bhk2, bd2hk2, bdfhk2, bf2hk2, df3hk2, fghk2, af2g2hk2, adg3hk2, aik2, ai2k2, ai3k2, bjk2, ab2d2jk2, adfjk2, af2jk2, j2k2, ak3, adk3, ad2k3, dek3, efk3, d2efk3, af2k3, ad2f2k3, bdgk3, cdfgk3, bdf2gk3, aef2gk3, f3gk3, d2f3gk3, ai2k3, d2jk3, adejk3, dfjk3, aefjk3, f2jk3, abdgjk3, adgj2k3, ak4, adk4, ad2k4, dek4, efk4, d2efk4, f2k4, d2f2k4, ak5, adk5, ad2k5, efk5, af2k5, ad2f2k5}

Phi = 1 a 1 a b b b c a d e f g h i j k

Monoid Structure

Idempotent  |G|  |Arch|
122
b2416
c2 *16948
d244
b2d2824
f4840
abdg316304
i246
j2832
b2k2846
b2d2k21664
i2k2816
j2k21696
k4410
d2k4820