Details Page for 0.5751

Complete Solution is Known:

Period:  
Preperiod:  
Quotient Size:   490
P-Portion Size:   122
Tame?   No

MSV File: q-0.5751.msv

Growth Pattern:

Heap   Q-Size   P-Size
121
362
982
16123
18184
20225
22286
24348
26429
285012
306013
327017
348218
369423
3810824
4012230
4213831
4415438
4617239
4819047
5021048
5223057
5425258
5627468
5829869
6032280
6234881
6437493
6640294
68430107
70460108
72490122

(Click on a heap to see details)

Details for Q62(0.5751):

Q = <a,b,c,d,e,f,g,h,i,j,k,l,m,n,o,p,q,r,s,t,u,v,w,x,y,z,A,B | a2=1, b27=b25, bc=ab3, c2=b4, bd=ab5, cd=b6, d2=b8, b2e=b7, ce=ab7, de=ab9, e2=b10, b3f=ab9, cf=ab2f, df=b10, ef=ab11, f2=b12, b4g=b11, cg=ab2g, dg=ab11, eg=b12, fg=ab13, g2=b14, b5h=ab13, ch=ab2h, dh=ab4h, eh=ab13, fh=b14, gh=ab15, h2=b16, b6i=b15, ci=ab2i, di=ab4i, ei=b5i, fi=ab15, gi=b16, hi=ab17, i2=b18, b7j=ab17, cj=ab2j, dj=ab4j, ej=b5j, fj=ab6j, gj=ab17, hj=b18, ij=ab19, j2=b20, b8k=b19, ck=ab2k, dk=ab4k, ek=b5k, fk=ab6k, gk=b7k, hk=ab19, ik=b20, jk=ab21, k2=b22, b9l=ab21, cl=ab2l, dl=ab4l, el=b5l, fl=ab6l, gl=b7l, hl=ab8l, il=ab21, jl=b22, kl=ab23, l2=b24, b10m=b23, cm=ab2m, dm=ab4m, em=b5m, fm=ab6m, gm=b7m, hm=ab8m, im=b9m, jm=ab23, km=b24, lm=ab25, m2=b26, b11n=ab25, cn=ab2n, dn=ab4n, en=b5n, fn=ab6n, gn=b7n, hn=ab8n, in=b9n, jn=ab10n, kn=ab25, ln=b26, mn=ab25, n2=b26, b12o=b25, co=ab2o, do=ab4o, eo=b5o, fo=ab6o, go=b7o, ho=ab8o, io=b9o, jo=ab10o, ko=b11o, lo=ab25, mo=b26, no=ab25, o2=b26, b11p=ab10o, cp=ab2p, dp=ab4p, ep=b5p, fp=ab6p, gp=b7p, hp=ab8p, ip=b9p, jp=ab10p, kp=ab10o, lp=b11o, mp=ab25, np=b26, op=ab25, p2=b26, b10q=ab9p, cq=ab2q, dq=ab4q, eq=b5q, fq=ab6q, gq=b7q, hq=ab8q, iq=b9q, jq=b9p, kq=ab10p, lq=ab10o, mq=b11o, nq=ab25, oq=b26, pq=ab25, q2=b26, b9r=ab8q, cr=ab2r, dr=ab4r, er=b5r, fr=ab6r, gr=b7r, hr=ab8r, ir=ab8q, jr=b9q, kr=b9p, lr=ab10p, mr=ab10o, nr=b11o, or=ab25, pr=b26, qr=ab25, r2=b26, b8s=ab7r, cs=ab2s, ds=ab4s, es=b5s, fs=ab6s, gs=b7s, hs=b7r, is=ab8r, js=ab8q, ks=b9q, ls=b9p, ms=ab10p, ns=ab10o, os=b11o, ps=ab25, qs=b26, rs=ab25, s2=b26, b7t=ab6s, ct=ab2t, dt=ab4t, et=b5t, ft=ab6t, gt=ab6s, ht=b7s, it=b7r, jt=ab8r, kt=ab8q, lt=b9q, mt=b9p, nt=ab10p, ot=ab10o, pt=b11o, qt=ab25, rt=b26, st=ab25, t2=b26, b6u=ab5t, cu=ab2u, du=ab4u, eu=b5u, fu=b5t, gu=ab6t, hu=ab6s, iu=b7s, ju=b7r, ku=ab8r, lu=ab8q, mu=b9q, nu=b9p, ou=ab10p, pu=ab10o, qu=b11o, ru=ab25, su=b26, tu=ab25, u2=b26, b5v=ab4u, cv=ab2v, dv=ab4v, ev=ab4u, fv=b5u, gv=b5t, hv=ab6t, iv=ab6s, jv=b7s, kv=b7r, lv=ab8r, mv=ab8q, nv=b9q, ov=b9p, pv=ab10p, qv=ab10o, rv=b11o, sv=ab25, tv=b26, uv=ab25, v2=b26, b4w=ab3v, cw=ab2w, dw=b3v, ew=ab4v, fw=ab4u, gw=b5u, hw=b5t, iw=ab6t, jw=ab6s, kw=b7s, lw=b7r, mw=ab8r, nw=ab8q, ow=b9q, pw=b9p, qw=ab10p, rw=ab10o, sw=b11o, tw=ab25, uw=b26, vw=ab25, w2=b26, b3x=ab2w, cx=ab2x, dx=b3w, ex=b3v, fx=ab4v, gx=ab4u, hx=b5u, ix=b5t, jx=ab6t, kx=ab6s, lx=b7s, mx=b7r, nx=ab8r, ox=ab8q, px=b9q, qx=b9p, rx=ab10p, sx=ab10o, tx=b11o, ux=ab25, vx=b26, wx=ab25, x2=b26, b2y=abx, cy=bx, dy=ab2w, ey=b3w, fy=b3v, gy=ab4v, hy=ab4u, iy=b5u, jy=b5t, ky=ab6t, ly=ab6s, my=b7s, ny=b7r, oy=ab8r, py=ab8q, qy=b9q, ry=b9p, sy=ab10p, ty=ab10o, uy=b11o, vy=ab25, wy=b26, xy=ab25, y2=b26, bz=ay, cz=by, dz=ab2x, ez=ab2w, fz=b3w, gz=b3v, hz=ab4v, iz=ab4u, jz=b5u, kz=b5t, lz=ab6t, mz=ab6s, nz=b7s, oz=b7r, pz=ab8r, qz=ab8q, rz=b9q, sz=b9p, tz=ab10p, uz=ab10o, vz=b11o, wz=ab25, xz=b26, yz=ab25, z2=b26, bA=az, cA=ay, dA=bx, eA=ab2x, fA=ab2w, gA=b3w, hA=b3v, iA=ab4v, jA=ab4u, kA=b5u, lA=b5t, mA=ab6t, nA=ab6s, oA=b7s, pA=b7r, qA=ab8r, rA=ab8q, sA=b9q, tA=b9p, uA=ab10p, vA=ab10o, wA=b11o, xA=ab25, yA=b26, zA=ab25, A2=b26, bB=aA, cB=az, dB=by, eB=bx, fB=ab2x, gB=ab2w, hB=b3w, iB=b3v, jB=ab4v, kB=ab4u, lB=b5u, mB=b5t, nB=ab6t, oB=ab6s, pB=b7s, qB=b7r, rB=ab8r, sB=ab8q, tB=b9q, uB=b9p, vB=ab10p, wB=ab10o, xB=b11o, yB=ab25, zB=b26, AB=ab25, B2=b26>

P = {a, b2, b4, b6, b8, b10, b12, b14, b16, b18, b20, b22, b24, b26, ae, bf, ag, ab2g, bh, b3h, ai, ab2i, ab4i, bj, b3j, b5j, ak, ab2k, ab4k, ab6k, bl, b3l, b5l, b7l, am, ab2m, ab4m, ab6m, ab8m, bn, b3n, b5n, b7n, b9n, ao, ab2o, ab4o, ab6o, ab8o, ab10o, bp, b3p, b5p, b7p, b9p, aq, ab2q, ab4q, ab6q, ab8q, br, b3r, b5r, b7r, as, ab2s, ab4s, ab6s, bt, b3t, b5t, au, ab2u, ab4u, bv, b3v, aw, ab2w, bx, ay, aA}

Phi = 1 a a b b a a b b c c b3 b3 d d b5 e ab6 f b7 g ab8 h b9 i ab10 j b11 k ab12 l b13 m ab14 n b15 o ab16 p b17 q ab18 r b19 s ab20 t b21 u ab22 v b23 w ab24 x b25 y ab26 z b25 A ab26 B b25

Monoid Structure

Idempotent  |G|  |Arch|
122
b26 *4346