Details Page for 0.7032

Complete Solution is Known:

Period:  
Preperiod:  
Quotient Size:   364
P-Portion Size:   91
Tame?   No

MSV File: q-0.7032.msv

Growth Pattern:

Heap   Q-Size   P-Size
121
562
1182
16123
20184
24246
28327
324010
365011
406015
447216
488421
529822
5611228
6012829
6414436
6816237
7218045
7620046
8022055
8424256
8826466
9228867
9631278
10033879
10436491

(Click on a heap to see details)

Details for Q76(0.7032):

Q = <a,b,c,d,e,f,g,h,i,j,k,l,m,n,o,p,q,r,s | a2=1, b19=b17, bc=ab3, c2=b4, b2d=ab5, cd=b5, d2=b6, b3e=b7, ce=ab2e, de=ab7, e2=b8, b4f=ab9, cf=ab2f, df=ab3f, ef=ab9, f2=b10, b5g=b11, cg=ab2g, dg=ab3g, eg=b4g, fg=ab11, g2=b12, b6h=ab13, ch=ab2h, dh=ab3h, eh=b4h, fh=ab5h, gh=ab13, h2=b14, b7i=b15, ci=ab2i, di=ab3i, ei=b4i, fi=ab5i, gi=b6i, hi=ab15, i2=b16, b8j=ab17, cj=ab2j, dj=ab3j, ej=b4j, fj=ab5j, gj=b6j, hj=ab7j, ij=ab17, j2=b18, b9k=b17, ck=ab2k, dk=ab3k, ek=b4k, fk=ab5k, gk=b6k, hk=ab7k, ik=b8k, jk=ab17, k2=b18, b8l=ab7k, cl=ab2l, dl=ab3l, el=b4l, fl=ab5l, gl=b6l, hl=ab7l, il=ab7k, jl=b8k, kl=ab17, l2=b18, b7m=ab6l, cm=ab2m, dm=ab3m, em=b4m, fm=ab5m, gm=b6m, hm=b6l, im=ab7l, jm=ab7k, km=b8k, lm=ab17, m2=b18, b6n=ab5m, cn=ab2n, dn=ab3n, en=b4n, fn=ab5n, gn=ab5m, hn=b6m, in=b6l, jn=ab7l, kn=ab7k, ln=b8k, mn=ab17, n2=b18, b5o=ab4n, co=ab2o, do=ab3o, eo=b4o, fo=b4n, go=ab5n, ho=ab5m, io=b6m, jo=b6l, ko=ab7l, lo=ab7k, mo=b8k, no=ab17, o2=b18, b4p=ab3o, cp=ab2p, dp=ab3p, ep=ab3o, fp=b4o, gp=b4n, hp=ab5n, ip=ab5m, jp=b6m, kp=b6l, lp=ab7l, mp=ab7k, np=b8k, op=ab17, p2=b18, b3q=ab2p, cq=ab2q, dq=b2p, eq=ab3p, fq=ab3o, gq=b4o, hq=b4n, iq=ab5n, jq=ab5m, kq=b6m, lq=b6l, mq=ab7l, nq=ab7k, oq=b8k, pq=ab17, q2=b18, b2r=abq, cr=bq, dr=b2q, er=b2p, fr=ab3p, gr=ab3o, hr=b4o, ir=b4n, jr=ab5n, kr=ab5m, lr=b6m, mr=b6l, nr=ab7l, or=ab7k, pr=b8k, qr=ab17, r2=b18, bs=ar, cs=br, ds=abq, es=b2q, fs=b2p, gs=ab3p, hs=ab3o, is=b4o, js=b4n, ks=ab5n, ls=ab5m, ms=b6m, ns=b6l, os=ab7l, ps=ab7k, qs=b8k, rs=ab17, s2=b18>

P = {a, b2, b4, b6, b8, b10, b12, b14, b16, b18, d, abe, f, b2f, abg, ab3g, h, b2h, b4h, abi, ab3i, ab5i, j, b2j, b4j, b6j, abk, ab3k, ab5k, ab7k, l, b2l, b4l, b6l, abm, ab3m, ab5m, n, b2n, b4n, abo, ab3o, p, b2p, abq, r}

Phi = 1 a 1 a 1 b ab b ab a 1 c ac b ab b3 d ab2 b2 bd e b3 ab3 be f ab4 b4 bf g b5 ab5 bg h ab6 b6 bh i b7 ab7 bi j ab8 b8 bj k b9 ab9 bk l ab10 b10 bl m b11 ab11 bm n ab12 b12 bn o b13 ab13 bo p ab14 b14 bp q b15 ab15 bq r ab16 b16 br s b17 ab17 ar

Monoid Structure

Idempotent  |G|  |Arch|
122
b18 *4198