Details Page for 0.7076

Complete Solution is Known:

Period:  
Preperiod:  
Quotient Size:   4274
P-Portion Size:   261
Tame?   No

MSV File: q-0.7076.msv

Growth Pattern:

Heap   Q-Size   P-Size
121
562
9102
12285
14428
15468
198210
2015813
2150234
233134190
244274261

(Click on a heap to see details)

Details for Q24(0.7076):

Q = <a,b,c,d,e,f,g,h,i,j,k | a2=1, b3=b, c4=c2, c3d=cd, bc2d2=bd2, b2d3=d3, c2d3=d3, d4=abcd3, be=abd, c3e=ce, de=ac2d2, e2=b2d2, c2d2f=d2f, c2df2=df2, d3f2=d3, c2ef2=ef2, c2f3=f3, f5=f3, c3g=cg, b2d2g=d2g, c2d2g=d2g, d3g=ad3f, eg=adg, c2fg=fg, b2f2g=f2g, f3g=ab2f4, b2g2=g2, c2g2=g2, df2g2=b2df2, f2g3=f2g, g5=g3, b2h=h, c2d2h=d2h, d3h=acd3, eh=adh, c2gh=gh, ch2=b2c, d2h2=b2d2, f2h2=b2f2, gh2=b2c2g, h3=h, b2i=i, c2d2i=d2i, d3i=cd3, ei=adi, f2i=af2h, c2gi=gi, g4i=g2i, h2i=i, i2=ahi, b2d2j=d2j, c2d2j=d2j, d3j=bd3f, ej=ab2dj, bf3j=b2f4, d2f3j=bd2f4, b2gj=gj, f3hj=bf4h, b2j2=j2, f2j2=b2f2, gij2=gi, j3=b2j, b2k=k, c3k=ck, d2k=ad3, ek=adk, cdfk=ab2cd2f, c2f2k=f2k, df2k=ab2d2f2, f3k=ab2df3, cdgk=acd2g, dfgk=ad2fg, dg2k=ad2g2, f2g2k=f2k, c2hk=hk, dfhk=ad2fh, dghk=ad2gh, h2k=c2k, c2ik=ik, dfik=ad2fi, dgik=ad2gi, c2k2=k2, dk2=d3, fk2=b2d2f3, g3k2=gk2, ik2=ahk2, gjk2=abg2k2, j2k2=k2, k3=ad3>

P = {a, b2, c, ac2, b2c2, c3, acd, b2cd, ad2, b2d2, abcd3, cd2f, f2, b2f2, c2f2, b2c2f2, abcdf2, b2d2f2, cd2f3, f4, b2f4, abcdf4, b2d2f4, abcg, abdg, abc2dg, ab2cdfg, ad2fg, g2, cdg2, d2g2, f2g2, abcg3, abdg3, acdfg3, ad2fg3, g4, cdg4, d2g4, cdh, fh, c2fh, cd2fh, bdf2h, cf3h, cd2f3h, bdf4h, abcgh, ad2gh, af2gh, acdf2gh, cdg2h, fg2h, cd2fg2h, abcg3h, ad2g3h, cdg4h, fg4h, cd2fg4h, h2, acdi, afi, ac2fi, acd2fi, bcgi, d2gi, acdg2i, afg2i, acd2fg2i, bcg3i, d2g3i, ahi, ac2hi, acdhi, ad2hi, bcghi, bdghi, cdfghi, d2fghi, ag2hi, acdg2hi, ad2g2hi, bcg3hi, bdg3hi, cdfg3hi, d2fg3hi, cj, b2cj, c3j, b2c3j, dj, b2dj, c2dj, b2c2dj, bd2fj, abgj, abc2gj, abcdgj, abd2gj, abf2gj, abd2f2gj, cg2j, dg2j, bd2fg2j, abg3j, abcdg3j, abd2g3j, cg4j, dg4j, bd2fg4j, chj, c3hj, dhj, bcd2hj, c2dfhj, bf2hj, bc3f2hj, bcd2f2hj, abfghj, abcdfghj, adf2ghj, cg2hj, bd2g2hj, bf2g2hj, abcdg3hj, abfg3hj, abcd2fg3hj, cg4hj, bd2g4hj, cdfg4hj, dh2j, acij, ac3ij, adij, abcd2ij, ac2dfij, bfgij, bcdfgij, acg2ij, abd2g2ij, bcdg3ij, bfg3ij, bcd2fg3ij, achij, ac3hij, adhij, ac2dhij, abd2fhij, bghij, bcdghij, bd2ghij, acg2hij, adg2hij, abd2fg2hij, bg3hij, bcdg3hij, bd2g3hij, j2, c2j2, cdj2, d2j2, abcgj2, abdgj2, abc2dgj2, acdfgj2, ad2fgj2, g2j2, cdg2j2, d2g2j2, abcg3j2, abdg3j2, acdfg3j2, ad2fg3j2, g4j2, cdg4j2, d2g4j2, fhj2, c2fhj2, cdfhj2, abcghj2, ad2ghj2, cdg2hj2, fg2hj2, cd2fg2hj2, abcg3hj2, ad2g3hj2, fg4hj2, cdfg4hj2, h2j2, afij2, ac2fij2, acdfij2, ahij2, ac2hij2, acdhij2, ad2hij2, ack, adk, ac2dk, bcf2k, bgk, bc2gk, cfgk, acg2k, bg3k, cfg3k, acg4k, achk, abf2hk, cf2ghk, acg2hk, acg4hk, cik, cg2ik, chik, dhik, abghik, acfghik, cg2hik, abg3hik, acfg3hik, ajk, ac2jk, bdfjk, bcgjk, ag2jk, bcg3jk, ag4jk, ahjk, bcdhjk, bcfghjk, f2ghjk, bcg3hjk, acfg4hjk, ijk, abcdijk, abcfgijk, abcg3ijk, abcghijk, g2hijk, abcg3hijk, acj2k, adj2k, ac2dj2k, bgj2k, bc2gj2k, cfgj2k, acg2j2k, bg3j2k, cfg3j2k, acg4j2k, acfhj2k, acg2hj2k, acfg4hj2k, cfij2k, chij2k, dhij2k, k2, g2k2, aghk2, abchjk2}

Phi = 1 a 1 a 1 b ab b ab bd abd bd c ab2 d e b ab b f g h i j k

Monoid Structure

Idempotent  |G|  |Arch|
122
b244
c246
b2c21624
abcd3 *163044
f4824
b2f432680
g43274
h288
ahi88
ac2hi1624
ag2hi6496
j2810
c2j23254
g4j264136
h2j21616
ahij21616
ac2hij23248