Details Page for 0.7143

Complete Solution is Known:

Period:  
Preperiod:  
Quotient Size:   450
P-Portion Size:   106
Tame?   No

MSV File: q-0.7143.msv

Growth Pattern:

Heap   Q-Size   P-Size
121
262
982
13123
17184
21246
25327
294010
335011
376015
417216
458421
499822
5311228
5712829
6114436
6516237
6918045
7320046
7722055
8124256
8526466
8928867
9331278
9733879
10136491
10539292
109420105
113450106

(Click on a heap to see details)

Details for Q109(0.7143):

Q = <a,b,c,d,e,f,g,h,i,j,k,l,m,n,o,p,q,r,s,t,u,v,w,x,y,z,A,B | a2=1, b28=b26, bc=ab3, c2=b4, b2d=ab5, cd=b5, d2=b6, b3e=ab7, ce=ab2e, de=b7, e2=b8, b4f=ab9, cf=ab2f, df=ab3f, ef=b9, f2=b10, b5g=ab11, cg=ab2g, dg=ab3g, eg=ab4g, fg=b11, g2=b12, b6h=ab13, ch=ab2h, dh=ab3h, eh=ab4h, fh=ab5h, gh=b13, h2=b14, b7i=ab15, ci=ab2i, di=ab3i, ei=ab4i, fi=ab5i, gi=ab6i, hi=b15, i2=b16, b8j=ab17, cj=ab2j, dj=ab3j, ej=ab4j, fj=ab5j, gj=ab6j, hj=ab7j, ij=b17, j2=b18, b9k=ab19, ck=ab2k, dk=ab3k, ek=ab4k, fk=ab5k, gk=ab6k, hk=ab7k, ik=ab8k, jk=b19, k2=b20, b10l=ab21, cl=ab2l, dl=ab3l, el=ab4l, fl=ab5l, gl=ab6l, hl=ab7l, il=ab8l, jl=ab9l, kl=b21, l2=b22, b11m=ab23, cm=ab2m, dm=ab3m, em=ab4m, fm=ab5m, gm=ab6m, hm=ab7m, im=ab8m, jm=ab9m, km=ab10m, lm=b23, m2=b24, b12n=ab25, cn=ab2n, dn=ab3n, en=ab4n, fn=ab5n, gn=ab6n, hn=ab7n, in=ab8n, jn=ab9n, kn=ab10n, ln=ab11n, mn=b25, n2=b26, b13o=ab27, co=ab2o, do=ab3o, eo=ab4o, fo=ab5o, go=ab6o, ho=ab7o, io=ab8o, jo=ab9o, ko=ab10o, lo=ab11o, mo=ab12o, no=b27, o2=b26, b13p=b12o, cp=ab2p, dp=ab3p, ep=ab4p, fp=ab5p, gp=ab6p, hp=ab7p, ip=ab8p, jp=ab9p, kp=ab10p, lp=ab11p, mp=ab12p, np=ab12o, op=b27, p2=b26, b12q=b11p, cq=ab2q, dq=ab3q, eq=ab4q, fq=ab5q, gq=ab6q, hq=ab7q, iq=ab8q, jq=ab9q, kq=ab10q, lq=ab11q, mq=ab11p, nq=ab12p, oq=ab12o, pq=b27, q2=b26, b11r=b10q, cr=ab2r, dr=ab3r, er=ab4r, fr=ab5r, gr=ab6r, hr=ab7r, ir=ab8r, jr=ab9r, kr=ab10r, lr=ab10q, mr=ab11q, nr=ab11p, or=ab12p, pr=ab12o, qr=b27, r2=b26, b10s=b9r, cs=ab2s, ds=ab3s, es=ab4s, fs=ab5s, gs=ab6s, hs=ab7s, is=ab8s, js=ab9s, ks=ab9r, ls=ab10r, ms=ab10q, ns=ab11q, os=ab11p, ps=ab12p, qs=ab12o, rs=b27, s2=b26, b9t=b8s, ct=ab2t, dt=ab3t, et=ab4t, ft=ab5t, gt=ab6t, ht=ab7t, it=ab8t, jt=ab8s, kt=ab9s, lt=ab9r, mt=ab10r, nt=ab10q, ot=ab11q, pt=ab11p, qt=ab12p, rt=ab12o, st=b27, t2=b26, b8u=b7t, cu=ab2u, du=ab3u, eu=ab4u, fu=ab5u, gu=ab6u, hu=ab7u, iu=ab7t, ju=ab8t, ku=ab8s, lu=ab9s, mu=ab9r, nu=ab10r, ou=ab10q, pu=ab11q, qu=ab11p, ru=ab12p, su=ab12o, tu=b27, u2=b26, b7v=b6u, cv=ab2v, dv=ab3v, ev=ab4v, fv=ab5v, gv=ab6v, hv=ab6u, iv=ab7u, jv=ab7t, kv=ab8t, lv=ab8s, mv=ab9s, nv=ab9r, ov=ab10r, pv=ab10q, qv=ab11q, rv=ab11p, sv=ab12p, tv=ab12o, uv=b27, v2=b26, b6w=b5v, cw=ab2w, dw=ab3w, ew=ab4w, fw=ab5w, gw=ab5v, hw=ab6v, iw=ab6u, jw=ab7u, kw=ab7t, lw=ab8t, mw=ab8s, nw=ab9s, ow=ab9r, pw=ab10r, qw=ab10q, rw=ab11q, sw=ab11p, tw=ab12p, uw=ab12o, vw=b27, w2=b26, b5x=b4w, cx=ab2x, dx=ab3x, ex=ab4x, fx=ab4w, gx=ab5w, hx=ab5v, ix=ab6v, jx=ab6u, kx=ab7u, lx=ab7t, mx=ab8t, nx=ab8s, ox=ab9s, px=ab9r, qx=ab10r, rx=ab10q, sx=ab11q, tx=ab11p, ux=ab12p, vx=ab12o, wx=b27, x2=b26, b4y=b3x, cy=ab2y, dy=ab3y, ey=ab3x, fy=ab4x, gy=ab4w, hy=ab5w, iy=ab5v, jy=ab6v, ky=ab6u, ly=ab7u, my=ab7t, ny=ab8t, oy=ab8s, py=ab9s, qy=ab9r, ry=ab10r, sy=ab10q, ty=ab11q, uy=ab11p, vy=ab12p, wy=ab12o, xy=b27, y2=b26, b3z=b2y, cz=ab2z, dz=ab2y, ez=ab3y, fz=ab3x, gz=ab4x, hz=ab4w, iz=ab5w, jz=ab5v, kz=ab6v, lz=ab6u, mz=ab7u, nz=ab7t, oz=ab8t, pz=ab8s, qz=ab9s, rz=ab9r, sz=ab10r, tz=ab10q, uz=ab11q, vz=ab11p, wz=ab12p, xz=ab12o, yz=b27, z2=b26, b2A=bz, cA=abz, dA=ab2z, eA=ab2y, fA=ab3y, gA=ab3x, hA=ab4x, iA=ab4w, jA=ab5w, kA=ab5v, lA=ab6v, mA=ab6u, nA=ab7u, oA=ab7t, pA=ab8t, qA=ab8s, rA=ab9s, sA=ab9r, tA=ab10r, uA=ab10q, vA=ab11q, wA=ab11p, xA=ab12p, yA=ab12o, zA=b27, A2=b26, bB=A, cB=abA, dB=abz, eB=ab2z, fB=ab2y, gB=ab3y, hB=ab3x, iB=ab4x, jB=ab4w, kB=ab5w, lB=ab5v, mB=ab6v, nB=ab6u, oB=ab7u, pB=ab7t, qB=ab8t, rB=ab8s, sB=ab9s, tB=ab9r, uB=ab10r, vB=ab10q, wB=ab11q, xB=ab11p, yB=ab12p, zB=ab12o, AB=b27, B2=b26>

P = {a, b2, b4, b6, b8, b10, b12, b14, b16, b18, b20, b22, b24, b26, ad, abe, af, ab2f, abg, ab3g, ah, ab2h, ab4h, abi, ab3i, ab5i, aj, ab2j, ab4j, ab6j, abk, ab3k, ab5k, ab7k, al, ab2l, ab4l, ab6l, ab8l, abm, ab3m, ab5m, ab7m, ab9m, an, ab2n, ab4n, ab6n, ab8n, ab10n, abo, ab3o, ab5o, ab7o, ab9o, ab11o, ap, ab2p, ab4p, ab6p, ab8p, ab10p, ab12p, abq, ab3q, ab5q, ab7q, ab9q, ab11q, ar, ab2r, ab4r, ab6r, ab8r, ab10r, abs, ab3s, ab5s, ab7s, ab9s, at, ab2t, ab4t, ab6t, ab8t, abu, ab3u, ab5u, ab7u, av, ab2v, ab4v, ab6v, abw, ab3w, ab5w, ax, ab2x, ab4x, aby, ab3y, az, ab2z, abA, aB}

Phi = 1 a b a b ab b2 ab b2 c b3 ab2 b3 d b4 ab3 b4 e b5 ab4 b5 f b6 ab5 b6 g b7 ab6 b7 h b8 ab7 b8 i b9 ab8 b9 j b10 ab9 b10 k b11 ab10 b11 l b12 ab11 b12 m b13 ab12 b13 n b14 ab13 b14 o b15 ab14 b15 p b16 ab15 b16 q b17 ab16 b17 r b18 ab17 b18 s b19 ab18 b19 t b20 ab19 b20 u b21 ab20 b21 v b22 ab21 b22 w b23 ab22 b23 x b24 ab23 b24 y b25 ab24 b25 z b26 ab25 b26 A b27 ab26 b27 B b26 ab27 b26

Monoid Structure

Idempotent  |G|  |Arch|
122
b26 *4418