Details Page for 0.7162

Complete Solution is Known:

Period:  
Preperiod:  
Quotient Size:   402
P-Portion Size:   94
Tame?   No

MSV File: q-0.7162.msv

Growth Pattern:

Heap   Q-Size   P-Size
121
262
1182
23123
27184
31225
35286
39348
43429
475012
516013
557017
598218
639423
6710824
7112230
7513831
7915438
8317239
8719047
9121048
9523057
9925258
10327468
10729869
11132280
11534881
11937493
12340294

(Click on a heap to see details)

Details for Q79(0.7162):

Q = <a,b,c,d,e,f,g,h,i,j,k,l,m,n,o,p,q,r,s | a2=1, b18=b16, bc=ab3, c2=b4, bd=ab5, cd=b6, d2=b8, b2e=ab7, ce=b7, de=b9, e2=b10, b3f=ab9, cf=ab2f, df=b10, ef=b11, f2=b12, b4g=ab11, cg=ab2g, dg=b11, eg=b12, fg=b13, g2=b14, b5h=ab13, ch=ab2h, dh=ab4h, eh=b13, fh=b14, gh=b15, h2=b16, b6i=ab15, ci=ab2i, di=ab4i, ei=ab5i, fi=b15, gi=b16, hi=b17, i2=b16, b7j=ab17, cj=ab2j, dj=ab4j, ej=ab5j, fj=ab6j, gj=b17, hj=b16, ij=b17, j2=b16, b7k=b6j, ck=ab2k, dk=ab4k, ek=ab5k, fk=ab6k, gk=ab6j, hk=b17, ik=b16, jk=b17, k2=b16, b6l=b5k, cl=ab2l, dl=ab4l, el=ab5l, fl=ab5k, gl=ab6k, hl=ab6j, il=b17, jl=b16, kl=b17, l2=b16, b5m=b4l, cm=ab2m, dm=ab4m, em=ab4l, fm=ab5l, gm=ab5k, hm=ab6k, im=ab6j, jm=b17, km=b16, lm=b17, m2=b16, b4n=b3m, cn=ab2n, dn=ab3m, en=ab4m, fn=ab4l, gn=ab5l, hn=ab5k, in=ab6k, jn=ab6j, kn=b17, ln=b16, mn=b17, n2=b16, b3o=b2n, co=ab2o, do=ab3n, eo=ab3m, fo=ab4m, go=ab4l, ho=ab5l, io=ab5k, jo=ab6k, ko=ab6j, lo=b17, mo=b16, no=b17, o2=b16, b2p=bo, cp=abo, dp=ab2n, ep=ab3n, fp=ab3m, gp=ab4m, hp=ab4l, ip=ab5l, jp=ab5k, kp=ab6k, lp=ab6j, mp=b17, np=b16, op=b17, p2=b16, bq=p, cq=abp, dq=ab2o, eq=ab2n, fq=ab3n, gq=ab3m, hq=ab4m, iq=ab4l, jq=ab5l, kq=ab5k, lq=ab6k, mq=ab6j, nq=b17, oq=b16, pq=b17, q2=b16, br=q, cr=ap, dr=abo, er=ab2o, fr=ab2n, gr=ab3n, hr=ab3m, ir=ab4m, jr=ab4l, kr=ab5l, lr=ab5k, mr=ab6k, nr=ab6j, or=b17, pr=b16, qr=b17, r2=b16, bs=r, cs=aq, ds=abp, es=abo, fs=ab2o, gs=ab2n, hs=ab3n, is=ab3m, js=ab4m, ks=ab4l, ls=ab5l, ms=ab5k, ns=ab6k, os=ab6j, ps=b17, qs=b16, rs=b17, s2=b16>

P = {a, b2, b4, b6, b8, b10, b12, b14, b16, ae, abf, ag, ab2g, abh, ab3h, ai, ab2i, ab4i, abj, ab3j, ab5j, ak, ab2k, ab4k, ab6k, abl, ab3l, ab5l, am, ab2m, ab4m, abn, ab3n, ao, ab2o, abp, aq, as}

Phi = 1 a b a 1 ab 1 ab b a b c ac ab ac ab3 b3 ab2 b3 d b4 ab3 b4 e b5 ab4 b5 f b6 ab5 b6 g b7 ab6 b7 h b8 ab7 b8 i b9 ab8 b9 j b10 ab9 b10 k b11 ab10 b11 l b12 ab11 b12 m b13 ab12 b13 n b14 ab13 b14 o b15 ab14 b15 p b16 ab15 b16 q b17 ab16 b17 r b16 ab17 b16 s b17 ab16 b17

Monoid Structure

Idempotent  |G|  |Arch|
122
b16 *4152