Details Page for 0.7277

Complete Solution is Known:

Period:  
Preperiod:  
Quotient Size:   2454
P-Portion Size:   54
Tame?   No

MSV File: q-0.7277.msv

Growth Pattern:

Heap   Q-Size   P-Size
121
362
5102
8163
14325
166410
1711216
2012416
2117626
2325236
2426837
2528039
3128440
3330040
3731842
4033443
4235044
4539848
5441450
5543052
8543854
8847054
19453454
41466254
91691854
1968143054
4286245454

(Click on a heap to see details)

Details for Q88(0.7277):

Q = <a,b,c,d,e,f,g,h,i,j,k,l,m,n,o,p,q,r,s,t | a2=1, b4=b2, b3c=bc, bc2=b3, c4=c2, bd=abc, c2d=ac3, d3=d, b3e=be, be2=b3, e3=e, bf=abc, c2f=ab2c, cf2=cdf, df3=d2f2, f4=f2, bg=abe, c2g=ab2e, e2g=g, dfg=ab2e, f2g=ab2e, g2=aeg, bh=ab3, ch=ab2c, dh=acd2eg, e2h=h, f3h=fh, gh=cdg, h2=b2, b2i=bce, bci=b2e, c2i=bce, cd2i=ci, ei=bc, cfi=cdi, d2fi=fi, f2i=dfi, gi=abc, hi=abce, bi2=b, fi2=di2, ci3=ci, di3=fi, i4=i2, bj=abc, c2j=ab2c, cfj=cdj, defj=d2ej, df2j=d2fj, f3j=fj, gj=fg, f2hj=hj, d2ij=ij, fij=dij, i3j=ij, j2=b2, bk=abe, cd2k=ck, e2k=k, f2k=dfk, gk=b2, fhk=ab2ce, ik=abc, jk=b2ce, k2=b2, bl=be, cl=b2ce, d2l=l, el=b2, fl=ab2ce, gl=ab2, hl=ab2e, il=bc, jl=ab2ce, kl=ab2, l2=b2, b2m=ab2ce, cm=ab2e, dm=b2e, em=ab2c, fm=b2e, gm=b2c, hm=b2ce, i2m=m, jm=b2e, km=b2c, lm=ab2c, m2=b2, b3n=bn, b2cn=cn, c2n=b2n, dn=acn, e2n=n, cfn=ab2n, f2n=n, gn=ab2en, hn=ab2n, in=bcen, cjn=ab2n, kn=ab2en, ln=b2en, mn=acen, n2=b2, bo=abc, co=ab2, do=b2, e2o=o, go=b2ce, ho=b2c, io=abe, jo=afhj, ko=b2ce, lo=ab2ce, mo=b2e, no=acn, o2=b2, bp=be, c2p=p, dp=acp, e2p=p, fp=ab2ce, gp=ab2, hp=ab2e, ip=bc, jp=ab2ce, lp=b2, mp=ab2c, np=b2en, op=ab2ce, p2=b2, bq=bcn, c2q=q, dq=acq, e2q=q, fq=ab2n, gq=acen, hq=acn, iq=ben, jq=ab2n, lq=cen, mq=ab2en, nq=b2c, oq=ab2n, pq=cen, q2=b2, br=bn, c2r=r, dr=acr, e2r=r, fr=acn, gr=ab2en, hr=ab2n, ir=bcen, jr=acn, lr=b2en, mr=acen, nr=b2, or=acn, pr=b2en, qr=b2c, r2=b2, bs=ab2ce, c2s=s, ds=acs, es=abc, fs=be, gs=bc, hs=bce, is=ab2, js=be, ks=bc, ls=abc, ms=b3, ns=abcen, os=be, ps=abc, qs=aben, rs=abcen, s2=b2, b2t=t, c2t=t, dt=act, e2t=t, ft=act, gt=aet, ht=at, it=bcet, jt=act, kt=aet, lt=et, mt=acet, ot=act, pt=et, qt=cnt, rt=nt, st=abcet, t2=b2>

P = {a, b2, c2, d, ad2, ace, de, acd2e, ae2, c2e2, de2, ad2e2, af, acdef, ae2f, f2, d2f2, e2f2, d2e2f2, af3, ae2f3, eg, adeg, d2eg, efg, aci, di, i2, d2i2, aj, acdej, ae2j, de2j, fj, d2fj, e2fj, af2j, ae2f2j, di2j, aek, ac2ek, ad2ek, efk, adefk, adl, aim, ajn, f3o, acep, aceq, ckq, cer, ackr, cs}

Phi = 1 a 1 b ab bc abc c d c2ek b3 ab3 bc abc e b2c f g ab3 b3 h i b2c j adfk k cdij ij ab3 b3 ab2 l bc b2n abe ab3 b3 m b2ce ab2e n bc o be abe p b ab2 b2n abce bn bc abc abcn q r abce bn bc abc abcn ab2e bim acn abce bce bc acekp bcen ab2 ab2n b2en be abce ab3 abn bn cekq b2n be b3 ab3 abn ab2ce aben s be bc t bcn ben b2ce abt bn ab2n bc b2e abe bcn abt b2en ab2en abce bce abn bcn bt cn b2en cen ct abce bcen b2e ab2e ab2en abcn at ct abce b2ce ab2ce abt aet abe t ben ab2en bct ab2ce cen abe cn acn bcn abcn bc b2ce abt abe be b3 bcn b2en bcet acet ab2n t act ct abcet abt bct b2c cet et bn bcnt abct ab2c abe cet ab2ce et abn ant bt bcnt abcnt bnt b2en t bcen abcen abce abt ab3 abc ent nt acnt ab2n bet ct aent abcnt acet ben abc abe ent cen t acet

Monoid Structure

Idempotent  |G|  |Arch|
122
b2 *64350
c2410
d244
e244
c2e2820
d2e288
f246
d2f248
e2f2812
d2e2f2816
aeg44
ad2eg88
i246
d2i2812