Details Page for 0.7311

Complete Solution is Known:

Period:  
Preperiod:  
Quotient Size:   1610
P-Portion Size:   205
Tame?   No

MSV File: q-0.7311.msv

Growth Pattern:

Heap   Q-Size   P-Size
121
262
5123
7163
10204
129616
1317623
1420229
1524435
1632644
1765482
1978297
2079097
211026141
221490192
231610205

(Click on a heap to see details)

Details for Q17(0.7311):

Q = <a,b,c,d,e,f,g,h,i,j,k,l,m | a2=1, b5=b3, bc2=b, c3=c, b2d=ab4, c2d2=d2, bd3=abd2, d4=ad3, be=b2, c2e=e, d3e=abd2, e2=b2, b3f=b3c, bdf=ab3c, cdf=ab2cf, d2f=b4c, def=ab3c, b2f2=b4, c2f2=f2, df2=ab4, ef2=b3, f3=cf2, b2g=ab4, c2g=g, bdg=b3, d2g=ab4, deg=b3, dfg=b4c, efg=ab3c, bg2=b3, dg2=adg, eg2=b3, f2g2=cfg2, g3=ag2, b2h=b3, d3h=ad2h, eh=abdh, c2fh=fh, dfh=ab3c, gh=ab3, h2=b4, b2i=ab3, c2i=i, di=b3, egi=acefi, g2i=ab3, hi=ab4, i2=b4, bj=b3, c2dj=dj, d2j=b4, ej=b3, c2fj=fj, dfj=ab4c, f2gj=cfgj, g2j=agj, hj=b3, ij=ab3, j2=b4, b3k=ab3, bdk=b3, d3k=ad2k, d2ek=ab3, efk=bfk, bf2k=ab3, bgk=b3, dgk=ab4, egk=b3, fgk=cgk, g2k=agk, bhk=ab4, c2hk=hk, dhk=ahk, fhk=ab3c, ik=b3, jk=ab4, k2=b4, b2l=b3, bd2l=b4, del=abl, bfl=b4c, cfl=b3, efl=b4c, f2l=b3, gl=ab3, bhl=b3, c2hl=hl, dhl=ahl, fhl=b4c, il=ab4, jl=b3, bkl=b2cfk, d2kl=abd2, hkl=abd2h, l2=b4, b2m=b4c, bd2m=b3c, d3m=cd2k, d2em=cdek, egm=acefm, fg2m=cfg2, c2hm=hm, d2hm=achk, fhm=f2h, efim=b2cfk, c2jm=jm, djm=bdhm, fjm=f2j, gjm=fgj, bkm=ab3c, cdkm=b4, d2km=ab4c, ekm=ab3c, cfkm=cf2k, f2km=cf2k, gkm=cgk, hkm=ab3c, blm=acekl, c2dlm=dlm, d2lm=cdkl, flm=b3, hlm=bcd2h, cklm=ab3, dklm=b3c, c2m2=m2, d2m2=b4, em2=abdm2, dfm2=ab4c, f2m2=cfm2, gm2=acg2m, im2=ab3, dkm2=b4, fkm2=cf2k, lm2=b3, fm3=cfm2, km3=cf2k, bm4=bcm3, hm4=chm3, jm4=cjm3, m5=cm4>

P = {a, b2, b4, ac, ac2, d2, ad3, acf, b2cf, af2, g, cg, cfg, f2g, ag2, acg2, acfg2, ah, abch, dh, bcdh, abcd2h, bcfh, af2h, bi, ei, bf2i, bcfgi, acj, ac2j, acfj, gj, cgj, cfgj, ak, ab2k, dk, c2dk, ad2k, abcfk, af2k, bl, abdl, el, hl, ackl, cekl, afkl, dfkl, acm, acdm, cd2m, afm, ac2fm, adfm, acf2m, gm, cgm, fgm, cf2gm, ag2m, acg2m, achm, cdhm, bcim, ceim, bcf2im, bfgim, aelm, klm, am2, adm2, acfm2, bhm2, abdhm2, ajm2, am3, acm3, achm3, cdhm3, am4, adm4}

Phi = 1 a b ab a c b d b2 e f g h i j k l m b4

Monoid Structure

Idempotent  |G|  |Arch|
122
b4 *8556
c244
ad3414
f2410
g248
cfg2420
cg2m48
cfm2414
m4418