Period: | |
Preperiod: | |
Quotient Size: | 564 |
P-Portion Size: | 140 |
Tame? | No |
MSV File: q-0.7541.msv
Heap | Q-Size | P-Size |
1 | 2 | 1 |
2 | 6 | 2 |
5 | 8 | 2 |
10 | 12 | 3 |
11 | 18 | 4 |
12 | 22 | 5 |
13 | 28 | 6 |
14 | 32 | 7 |
15 | 38 | 8 |
16 | 44 | 10 |
17 | 52 | 11 |
18 | 60 | 14 |
19 | 70 | 15 |
20 | 80 | 19 |
21 | 92 | 20 |
22 | 104 | 25 |
23 | 118 | 26 |
24 | 132 | 32 |
25 | 148 | 33 |
26 | 164 | 40 |
27 | 182 | 41 |
28 | 200 | 49 |
29 | 220 | 50 |
30 | 240 | 59 |
31 | 262 | 60 |
32 | 284 | 70 |
33 | 308 | 71 |
34 | 332 | 82 |
35 | 358 | 83 |
36 | 384 | 95 |
37 | 412 | 96 |
38 | 440 | 109 |
39 | 470 | 110 |
40 | 500 | 124 |
41 | 532 | 125 |
42 | 564 | 140 |
(Click on a heap to see details)
Q = <a,b,c,d,e,f,g,h,i,j,k,l,m,n,o,p,q,r,s,t,u,v,w,x,y,z,A | a2=1, b25=b23, bc=ab3, c2=b4, bd=ab5, cd=b6, d2=b8, be=ab7, ce=b8, de=b10, e2=b12, b2f=b9, cf=ab9, df=ab11, ef=ab13, f2=b14, b3g=ab11, cg=ab2g, dg=b12, eg=b14, fg=ab15, g2=b16, b4h=b13, ch=ab2h, dh=ab13, eh=ab15, fh=b16, gh=ab17, h2=b18, b5i=ab15, ci=ab2i, di=ab4i, ei=b16, fi=ab17, gi=b18, hi=ab19, i2=b20, b6j=b17, cj=ab2j, dj=ab4j, ej=ab17, fj=b18, gj=ab19, hj=b20, ij=ab21, j2=b22, b7k=ab19, ck=ab2k, dk=ab4k, ek=ab6k, fk=ab19, gk=b20, hk=ab21, ik=b22, jk=ab23, k2=b24, b8l=b21, cl=ab2l, dl=ab4l, el=ab6l, fl=b7l, gl=ab21, hl=b22, il=ab23, jl=b24, kl=ab23, l2=b24, b9m=ab23, cm=ab2m, dm=ab4m, em=ab6m, fm=b7m, gm=ab8m, hm=ab23, im=b24, jm=ab23, km=b24, lm=ab23, m2=b24, b10n=b23, cn=ab2n, dn=ab4n, en=ab6n, fn=b7n, gn=ab8n, hn=b9n, in=ab23, jn=b24, kn=ab23, ln=b24, mn=ab23, n2=b24, b9o=ab8n, co=ab2o, do=ab4o, eo=ab6o, fo=b7o, go=ab8o, ho=ab8n, io=b9n, jo=ab23, ko=b24, lo=ab23, mo=b24, no=ab23, o2=b24, b8p=ab7o, cp=ab2p, dp=ab4p, ep=ab6p, fp=b7p, gp=b7o, hp=ab8o, ip=ab8n, jp=b9n, kp=ab23, lp=b24, mp=ab23, np=b24, op=ab23, p2=b24, b7q=ab6p, cq=ab2q, dq=ab4q, eq=ab6q, fq=ab6p, gq=b7p, hq=b7o, iq=ab8o, jq=ab8n, kq=b9n, lq=ab23, mq=b24, nq=ab23, oq=b24, pq=ab23, q2=b24, b6r=ab5q, cr=ab2r, dr=ab4r, er=b5q, fr=ab6q, gr=ab6p, hr=b7p, ir=b7o, jr=ab8o, kr=ab8n, lr=b9n, mr=ab23, nr=b24, or=ab23, pr=b24, qr=ab23, r2=b24, b5s=ab4r, cs=ab2s, ds=ab4s, es=b5r, fs=b5q, gs=ab6q, hs=ab6p, is=b7p, js=b7o, ks=ab8o, ls=ab8n, ms=b9n, ns=ab23, os=b24, ps=ab23, qs=b24, rs=ab23, s2=b24, b4t=ab3s, ct=ab2t, dt=b3s, et=ab4r, ft=b5r, gt=b5q, ht=ab6q, it=ab6p, jt=b7p, kt=b7o, lt=ab8o, mt=ab8n, nt=b9n, ot=ab23, pt=b24, qt=ab23, rt=b24, st=ab23, t2=b24, b3u=ab2t, cu=ab2u, du=b3t, eu=ab4s, fu=ab4r, gu=b5r, hu=b5q, iu=ab6q, ju=ab6p, ku=b7p, lu=b7o, mu=ab8o, nu=ab8n, ou=b9n, pu=ab23, qu=b24, ru=ab23, su=b24, tu=ab23, u2=b24, b2v=abu, cv=bu, dv=ab2t, ev=b3s, fv=ab4s, gv=ab4r, hv=b5r, iv=b5q, jv=ab6q, kv=ab6p, lv=b7p, mv=b7o, nv=ab8o, ov=ab8n, pv=b9n, qv=ab23, rv=b24, sv=ab23, tv=b24, uv=ab23, v2=b24, bw=av, cw=bv, dw=ab2u, ew=b3t, fw=b3s, gw=ab4s, hw=ab4r, iw=b5r, jw=b5q, kw=ab6q, lw=ab6p, mw=b7p, nw=b7o, ow=ab8o, pw=ab8n, qw=b9n, rw=ab23, sw=b24, tw=ab23, uw=b24, vw=ab23, w2=b24, bx=aw, cx=av, dx=bu, ex=ab2t, fx=b3t, gx=b3s, hx=ab4s, ix=ab4r, jx=b5r, kx=b5q, lx=ab6q, mx=ab6p, nx=b7p, ox=b7o, px=ab8o, qx=ab8n, rx=b9n, sx=ab23, tx=b24, ux=ab23, vx=b24, wx=ab23, x2=b24, by=ax, cy=aw, dy=bv, ey=ab2u, fy=ab2t, gy=b3t, hy=b3s, iy=ab4s, jy=ab4r, ky=b5r, ly=b5q, my=ab6q, ny=ab6p, oy=b7p, py=b7o, qy=ab8o, ry=ab8n, sy=b9n, ty=ab23, uy=b24, vy=ab23, wy=b24, xy=ab23, y2=b24, bz=ay, cz=ax, dz=av, ez=bu, fz=ab2u, gz=ab2t, hz=b3t, iz=b3s, jz=ab4s, kz=ab4r, lz=b5r, mz=b5q, nz=ab6q, oz=ab6p, pz=b7p, qz=b7o, rz=ab8o, sz=ab8n, tz=b9n, uz=ab23, vz=b24, wz=ab23, xz=b24, yz=ab23, z2=b24, bA=az, cA=ay, dA=aw, eA=bv, fA=bu, gA=ab2u, hA=ab2t, iA=b3t, jA=b3s, kA=ab4s, lA=ab4r, mA=b5r, nA=b5q, oA=ab6q, pA=ab6p, qA=b7p, rA=b7o, sA=ab8o, tA=ab8n, uA=b9n, vA=ab23, wA=b24, xA=ab23, yA=b24, zA=ab23, A2=b24>
P = {a, b2, b4, b6, b8, b10, b12, b14, b16, b18, b20, b22, b24, af, bg, ah, ab2h, bi, b3i, aj, ab2j, ab4j, bk, b3k, b5k, al, ab2l, ab4l, ab6l, bm, b3m, b5m, b7m, an, ab2n, ab4n, ab6n, ab8n, bo, b3o, b5o, b7o, ap, ab2p, ab4p, ab6p, bq, b3q, b5q, ar, ab2r, ab4r, bs, b3s, at, ab2t, bu, av, ax, az}
Phi = 1 a b a b c b3 d b5 e f g h i j k l m n o p q r s t u v w x y z A
Idempotent | |G| | |Arch| |
---|---|---|
1 | 2 | 2 |
b24 * | 4 | 260 |