Details Page for 0.7662

Complete Solution is Known:

Period:  
Preperiod:  
Quotient Size:   2056
P-Portion Size:   3
Tame?   No

MSV File: q-0.7662.msv

Growth Pattern:

Heap   Q-Size   P-Size
121
362
5102
7122
11163
15243
38403
141723
3151363
6582643
13365203
305810323
648820563

(Click on a heap to see details)

Details for Q315(0.7662):

Q = <a,b,c,d,e,f,g,h | a2=1, b3=b, c2=b2, bd=bc, d2=b2, b2e=e, de=ce, e2=b2, b2f=f, df=cf, f2=b2, b2g=g, dg=cg, g2=b2, b2h=h, dh=ch, h2=b2>

P = {a, b2, ad}

Phi = 1 a 1 b ab c ac acd bc b ab d ab2c abc bc e ae ab2 be abc bc e ab2c b2c ab b bc ab2 ab2c b2c ab b e bce be abe ab2c ae f bce abce bf ab b2c ab2c ab2 bc b ab b2c ab2c abe bc abc f b ab2c bf ae abc f b2c ab b bc ab2 ab2c b2c bf e ae f bef abcf ab2c ace ae ab2 abce b ab b2c ab2c ab2 bc b ae b2c ab2c abe bc abc abcef b be bce ae abc af b2c ab b bc ae ab2c b2c be cef e cf f abcf ab2c ace ae ab2 abce bcf ab b2c ab2c bce bc abcf ae b2c ab2c abce abf abcf f abef be bce ae e af b2c abce bf bc g f b2c bg e ag cf bef abe ab2c acef ae bce abcef bcf aef f acf abef bc ef ae b bef ag bg abcf ab2c abcef be bce ae e ce abe ab acef ae e abcef bce be acef cef e f g bg ace eg abef abce ef aef b2c ab2c abef abcg ef aef bg ab2c g ag abcf cg b be bce abf e abeg abe abce eg cef g abcef bce fg acef ae bcg f abg cg bf abf abef abcef abcf aef b2c abf bce abcg bfg ae b ab2c g ag abcf cg beg be eg bceg bf aceg bcef ab afg cef g abcef bce bg acef cef bcg abce af cg b2c abf bce abcef beg ce abg abf bce abcg ef abfg ab2c bef abef ag abcf cg efg be abceg ae e bcf bcef f cf cef abg be bce ab2c acef abf bcg ag af cg cef abf bce acf beg bg e abf cf abcg bcefg bcf h cefg cf efg abh cg abcef abeg cf bc bf aceg acg afg e cef bf bcfg b2c f h aeg abh abcef b2c ah b bf bce acf e bg h abf cf f ach bcf abcf cefg h ag abh bcf abcf cg cf eh e aef bcef f bfg ae bf aefg b2c f beg ab acef afg b2c cg b abf g ch e beg abcf acfg cf ah bcefg bcf bch acefg aeg bceg bcfg cg ef ah cf g bcfg aceg bce bfg h ae abc bh b2c cg h ab acef ch abeh f bch cef ceh ch abe aceg abc abf fh bh afg ae abcf abch abeh abefg ceh ab abcf ab2c b2c abf g bh abcf be abfg acefg bch bh b2c cg h ab acef ab2c af f ah bh g afh acfh abeh e abch bf bceg abceg ab bch abch beg abefg bcg ab acefg bg aeh beh abeh bfh ceh afh fh abcfh bch aefg acfh f afh ab befh ab2c abe abcef acfg ah acef gh bcef bcf eh abf fh bcefg bce afg bch abch afh bg abh aef abefh bch afh gh bcfh ab ceh abgh h acefg bch eg bcfg bg abfg abf aefh gh b2c ab2c bgh ae e cegh b2c abeh abcgh cef abfg afh beh ab egh abefg abfg ceh bcg bfh ef aeh abg abgh cegh ab af afgh bce acfg bch f bcfg acefh befh abch acef afgh aefg ab2c bch ae acef bcefg b2c befh egh ae abegh fh bce abefh abcegh cfg acef abce befh afg b acefg bce eg g ab ace afh bce abcfh bcfh eg bcfg f abfg cfg aefh cegh b2c ab2c afgh ae bch cegh abe abeh egh cef bce abegh beh abgh abfh abg aefh abce bfgh afg abcf ae bce befgh cefgh ab ceh aefgh abcefgh acefg acfg abcfg bcfg abcef cefg aceg e h abe be bce abeg aeh abcg b2c abefh abcegh ae ceh abgh acefgh bcefg b

Monoid Structure

Idempotent  |G|  |Arch|
122
b2 *128134