Details Page for 0.0164

Complete Solution is Known:

Period:  
Preperiod:  
Quotient Size:   1180
P-Portion Size:   34
Tame?   No

MSV File: q-0.0164.msv

Growth Pattern:

Heap   Q-Size   P-Size
221
562
10102
15123
16164
225612
306013
337216
348217
358818
3611624
4216033
4516434
5117234
11318834
30922034
93728434
213841234
556266834
14935118034

(Click on a heap to see details)

Details for Q113(0.0164):

Q = <a,b,c,d,e,f,g,h,i,j,k,l,m,n,o,p,q,r,s | a2=1, b4=b2, b3c=bc, b2c2=c2, c4=ac3, b3d=bd, cd=ab2d, bd2=abc3, d3=d, be=bd, ce=ab2d, d2e=e, e2=ac3, b2f=f, c2f=abc3, df=bd, ef=bd, f2=ac3, b2cg=cg, c2g=c3, bdg=abd, eg=ab2d, g2=ac3, b2h=h, ch=ac3, dh=ab2d, eh=ab2d, gh=bcfg, fh2=afh, h3=ah2, bi=bd, c2i=b2d, di=ac3, ei=ac3, fi=bd, gi=ab2d, hi=ab2d, i2=ac3, bj=bd, c2j=b2d, dj=ac3, ej=ac3, fj=bd, gj=ab2d, hj=ab2d, j2=ac3, b2k=k, ck=acfg, dk=bd, ek=bd, fk=ac3, gk=acfg, hk=bc3, ik=bd, jk=bd, k2=ac3, b2l=bc3, cl=abc3, dl=abd, el=abd, fl=c3, hl=abc3, il=abd, jl=abd, kl=c3, l2=ac3, b3m=bm, cm=ac3, bdm=abd, em=dg, fm=bc3, gm=ac3, h2m=ahm, im=ab2d, jm=ab2d, km=bc3, lm=abc3, m2=ac3, b3n=bn, cn=bcfg, dn=dg, en=ab2d, fn=bc3, gn=ac3, hn=hm, in=ab2d, jn=ab2d, kn=bc3, ln=abc3, mn=ac3, n2=ac3, bo=bn, c2o=c3, do=ab2d, eo=ab2d, fo=bc3, go=ac3, ho=hm, cijo=bgl, ko=bc3, lo=abc3, mo=ac3, no=ac3, o2=ac3, b2p=p, cp=fg, dp=bd, ep=bd, gp=bc3, h2p=ahp, ip=bd, jp=bd, kp=ac3, lp=c3, np=mp, op=mp, p2=ac3, b2q=q, cq=bcfg, dq=ab2d, eq=ab2d, fq=bc3, gq=ac3, hq=ac3, iq=ab2d, jq=ab2d, kq=bc3, lq=abc3, mq=ac3, nq=ac3, oq=ac3, pq=bc3, q2=ac3, b2r=r, cr=ar, d2r=r, er=dr, fr=br, gr=ar, hr=ar, ir=dr, jr=dr, kr=br, lr=abr, mr=ar, nr=ar, or=ar, pr=br, qr=ar, r2=ac3, b2s=s, cs=as, d2s=s, es=ds, fs=bs, gs=as, hs=as, is=ds, js=ds, ks=bs, ls=abs, ms=as, ns=as, os=as, ps=bs, qs=as, s2=ac3>

P = {a, b2, ac, ab2c, c2, ac3, ad, ad2, ade, bf, abcf, bg, b3g, bcg, fg, ah, abfh, h2, ij, acij, bk, l, agl, abm, hm, ab2n, ao, cio, aijo, abp, bhp, fhp, abmp, aq}

Phi = 1 1 a 1 a bd bd bd abd abd b b a c c d e abd bd bd bd f g ah2 h i b2d j dg abd k abc3 abc3 l m n o b2d ab2d abd abd acfg p abc3 c3 q acio b2d b2d abd abd r abc3 bd afg ar bdr b2d b2d b2d ab2d ab2d abc3 abc3 abc3 bc3 bc3 abdr r ab2d ab2d ab2d ar br bc3 abc3 abc3 abd dr ab2d b2d b2d c3 c3 c3 abc3 abc3 abd abd abd b2d b2d b2d c3 c3 abc3 abc3 abc3 abd abd bd bd b2d c3 c3 r abdr abc3 abdr bd abd br b2d s r c3 c3 c3 bdr bd bd bd r r s c3 ab2d as adr adr abd bds bd bd r c3 c3 c3 b2d b2d b2d bds abd abc3 bd br s c3 c3 c3 bdr abdr bds abd abd abc3 abc3 abc3 c3 c3 c3 b2d b2d bds abd abd as abc3 s s dr dr b2d ab2d ab2d br abc3 abc3 bc3 bc3 dr dr r c3 ar ar br abr abc3 abc3 adr dr ab2d b2d ab2d ar s bds bs bc3 abd abd abd ds ab2d ab2d c3 c3 abc3 abc3 bc3 abd abd abd r r c3 c3 c3 bs abs abc3 abc3 abc3 bd as r r b2d s abs abdr bd bd bd ds ads r r s bs bdrs bds bdr abdr ds rs r c3 r bs abs abs abdr bds abr abds ads s s r r bdrs bdr abdr bds abds bc3 abc3 abc3 s adr ab2d b2d b2d b2d bds ars bd abc3 abc3 ar ar bdrs b2d b2d b2d bds bds abc3 br as s s dr dr ads bds bds br br abr drs dr dr ab2d ab2d bds abds

Monoid Structure

Idempotent  |G|  |Arch|
122
b246
ac3 *32168
d244
h248