Period: | |
Preperiod: | |
Quotient Size: | 1180 |
P-Portion Size: | 34 |
Tame? | No |
MSV File: q-0.0164.msv
Heap | Q-Size | P-Size |
2 | 2 | 1 |
5 | 6 | 2 |
10 | 10 | 2 |
15 | 12 | 3 |
16 | 16 | 4 |
22 | 56 | 12 |
30 | 60 | 13 |
33 | 72 | 16 |
34 | 82 | 17 |
35 | 88 | 18 |
36 | 116 | 24 |
42 | 160 | 33 |
45 | 164 | 34 |
51 | 172 | 34 |
113 | 188 | 34 |
309 | 220 | 34 |
937 | 284 | 34 |
2138 | 412 | 34 |
5562 | 668 | 34 |
14935 | 1180 | 34 |
(Click on a heap to see details)
Q = <a,b,c,d,e,f,g,h,i,j,k,l,m,n,o,p,q,r,s,t | a2=1, b4=b2, b3c=bc, b2c2=c2, c4=ac3, b3d=bd, cd=ab2d, bd2=abc3, d3=d, be=bd, ce=ab2d, d2e=e, e2=ac3, b2f=f, c2f=abc3, df=bd, ef=bd, f2=ac3, b2cg=cg, c2g=c3, bdg=abd, eg=ab2d, g2=ac3, b2h=h, ch=ac3, dh=ab2d, eh=ab2d, gh=bcfg, fh2=afh, h3=ah2, bi=bd, c2i=b2d, di=ac3, ei=ac3, fi=bd, gi=ab2d, hi=ab2d, i2=ac3, bj=bd, c2j=b2d, dj=ac3, ej=ac3, fj=bd, gj=ab2d, hj=ab2d, j2=ac3, b2k=k, ck=acfg, dk=bd, ek=bd, fk=ac3, gk=acfg, hk=bc3, ik=bd, jk=bd, k2=ac3, b2l=bc3, cl=abc3, dl=abd, el=abd, fl=c3, hl=abc3, il=abd, jl=abd, kl=c3, l2=ac3, b3m=bm, cm=ac3, bdm=abd, em=dg, fm=bc3, gm=ac3, h2m=ahm, im=ab2d, jm=ab2d, km=bc3, lm=abc3, m2=ac3, b3n=bn, cn=bcfg, dn=dg, en=ab2d, fn=bc3, gn=ac3, hn=hm, in=ab2d, jn=ab2d, kn=bc3, ln=abc3, mn=ac3, n2=ac3, bo=bn, c2o=c3, do=ab2d, eo=ab2d, fo=bc3, go=ac3, ho=hm, cijo=bgl, ko=bc3, lo=abc3, mo=ac3, no=ac3, o2=ac3, b2p=p, cp=fg, dp=bd, ep=bd, gp=bc3, h2p=ahp, ip=bd, jp=bd, kp=ac3, lp=c3, np=mp, op=mp, p2=ac3, b2q=q, cq=bcfg, dq=ab2d, eq=ab2d, fq=bc3, gq=ac3, hq=ac3, iq=ab2d, jq=ab2d, kq=bc3, lq=abc3, mq=ac3, nq=ac3, oq=ac3, pq=bc3, q2=ac3, b2r=r, cr=ar, d2r=r, er=dr, fr=br, gr=ar, hr=ar, ir=dr, jr=dr, kr=br, lr=abr, mr=ar, nr=ar, or=ar, pr=br, qr=ar, r2=ac3, b2s=s, cs=as, d2s=s, es=ds, fs=bs, gs=as, hs=as, is=ds, js=ds, ks=bs, ls=abs, ms=as, ns=as, os=as, ps=bs, qs=as, s2=ac3, b2t=t, ct=at, d2t=t, et=dt, ft=bt, gt=at, ht=at, it=dt, jt=dt, kt=bt, lt=abt, mt=at, nt=at, ot=at, pt=bt, qt=at, t2=ac3>
P = {a, b2, ac, ab2c, c2, ac3, ad, ad2, ade, bf, abcf, bg, b3g, bcg, fg, ah, abfh, h2, ij, acij, bk, l, agl, abm, hm, ab2n, ao, cio, aijo, abp, bhp, fhp, abmp, aq}
Phi = 1 1 a 1 a bd bd bd abd abd b b a c c d e abd bd bd bd f g ah2 h i b2d j dg abd k abc3 abc3 l m n o b2d ab2d abd abd acfg p abc3 c3 q acio b2d b2d abd abd r abc3 bd afg ar bdr b2d b2d b2d ab2d ab2d abc3 abc3 abc3 bc3 bc3 abdr r ab2d ab2d ab2d ar br bc3 abc3 abc3 abd dr ab2d b2d b2d c3 c3 c3 abc3 abc3 abd abd abd b2d b2d b2d c3 c3 abc3 abc3 abc3 abd abd bd bd b2d c3 c3 r abdr abc3 abdr bd abd br b2d s r c3 c3 c3 bdr bd bd bd r r s c3 ab2d as adr adr abd bds bd bd r c3 c3 c3 b2d b2d b2d bds abd abc3 bd br s c3 c3 c3 bdr abdr bds abd abd abc3 abc3 abc3 c3 c3 c3 b2d b2d bds abd abd as abc3 s s dr dr b2d ab2d ab2d br abc3 abc3 bc3 bc3 dr dr r c3 ar ar br abr abc3 abc3 adr dr ab2d b2d ab2d ar s bds bs bc3 abd abd abd ds ab2d ab2d c3 c3 abc3 abc3 bc3 abd abd abd r r c3 c3 c3 bs abs abc3 abc3 abc3 bd as r r b2d s abs abdr bd bd bd ds ads r r s bs bdrs bds bdr abdr ds rs r c3 r bs abs abs abdr bds abr abds ads s s r r bdrs bdr abdr bds abds bc3 abc3 abc3 s adr ab2d b2d b2d b2d bds ars bd abc3 abc3 ar ar bdrs b2d b2d b2d bds bds abc3 br as s s dr dr ads bds bds br br abr drs dr dr ab2d ab2d bds abds t br abr at abd abdrs ds ds dr ab2d ab2d br abc3 abc3 bc3 abdr s s ads ads c3 ar abs bs bs abdr abdr drs ads ar ab2d r r r c3 c3 bd bdr bdr ds ds r r r bs abdrs bdr bdr abdr abdr rs r r c3 ar abs abs abdr bdr t ds ads ar rs bdt s bdt abdr abdr bd t br ads s bdt as dr dr abs abds abds abdr br r rs bdt ar dr drs bdrs at abr br br br ars ars dr dr abdr abdr brs br br br abr abr dr dr adr adr abds abds bds abr abr ars drs as s adr bdt dr abrs abr br bc3 dt dt s dr dr ads ar ar ar abr bc3 abdr abdr dr dr adr adr abrs r r abdrs abdr abdr bdr drs drs bt bdt r brs brs abrs bdr bdr t drs bt r r bdt brs brs abs abdr abdr drs drs rt ar ar ar bdt abdrs abdr bds t t ds ds s r r bs abdt abdrs abds abdr t t rs rs ar ar abrs dr dr dr bdr t br br ar ar bdt dr dr bdrs bdrt abdr br abr abr abr abdt dr dr dr abt at at abr abr s s s adr c3 adr abdrs t abr abr ars br bdt bdt dr adr abdrs bds bds br abd dt dt adt dr ads abt bt bt brs abr abdrt dt dt drs ads adr bt bt bt brs abrs bdt bdr dt adt s dr r r r ar br br dt abdr abdr ds t abt abt bdt bdt abrt abs abdr adt adrs bdr at adrt r r bs bdrs bdrs bdr bdr t ds ars r ar brs bdt bs rt bdrs at t t s ar ar abdt bdt abdrs abdr bdr at t at s ds r bdt abdt brt adr abt abdr t abr abr ar ab2d bdt bdt adr dr at bs abr abr s abdst bdst bdt adr abrt bs bds br abrs abrs dt abdst bdt bdt bdt abt st bt brs t abr bdst ads adr adr bt bt abc3 bs abr br dt ab2d ab2d drs dr drs abt abt brs ar br adt adt drs b2d dr bt bt abs bdt r abrs dt dt bdr bdr s bst drt ar bds bds abds abds abdr s ds bst as abt brs abds abds abds adt drs drs at s rs ars bdrt abdt bds bds rt ast adrs s s ads bdt abdrt bds bds bdrs bdrs at at c3 as ar bdst abrt abdt bdrs abc3 bs t t t br rs adt abrt abdrs abds bs bc3 bs t br abr ads ads bdt bdt bdrs bdrs rt st adst as as ds ds ds bt dr bs bs abrs arst ars ars s bdst abrt abt abt bs ar ar adrt dst ads ds adrs abrt abt bt abc3 abds brs abrs dt b2d b2d bdr brt abrt abs abc3 r bdt abds adt dt adt c3 as as bt abt brs brs brs rt adt rt s s bdrt abt bdt bds bds bds rt t s at bst bdrt abdt abdt bds bds adst rt rt s s br abdst abdst brt bds bds adst st drt at s rs abdst bdrt bdst bds bds abdr bs bs drst s ar ds ds abd abd bdrs art art rt st as as ar ds abrt brt dr dr bs st drt drt bdst ads ads abrt bt bs bc3 bs drt drt drt ds ds ads brt brt
Idempotent | |G| | |Arch| |
---|---|---|
1 | 2 | 2 |
b2 | 4 | 6 |
ac3 * | 64 | 200 |
d2 | 4 | 4 |
h2 | 4 | 8 |