Details Page for 0.1163

Complete Solution is Known:

Period:  
Preperiod:  
Quotient Size:   1140
P-Portion Size:   19
Tame?   No

MSV File: q-0.1163.msv

Growth Pattern:

Heap   Q-Size   P-Size
121
462
1182
15122
17244
19327
39508
498013
559415
599616
6111617
6513219
25314819
66618019
139924419
315437219
602062819
12234114019

(Click on a heap to see details)

Details for Q253(0.1163):

Q = <a,b,c,d,e,f,g,h,i,j,k,l,m,n,o,p,q,r,s,t | a2=1, b4=b2, b2c=ab2, c2=b2, d2=b2, be=b3d, ce=ab2d, de=b2, e2=b2, bf=b3d, ef=b2, f2=b2, b2g=b3d, bcg=ab2d, bdg=b2, cdg=ab3, eg=dg, cfg=ab3, dfg=b3d, bg2=dg, dg2=bg, fg3=fg, g4=g2, bh=b2d, ch=ab3d, dh=b3, fh=eh, gh=b2, h2=b2, bi=ab2, ci=b3, ei=ab3d, fi=ab3d, gi=abg, hi=ab2d, i2=b2, bj=ab2, cj=b3, dj=di, ej=ab3d, fj=ab3d, gj=afg2, hj=ab2d, ij=b2, j2=b2, bk=b2, ck=ab3, dk=b3d, ek=b3d, fk=b3d, gk=fg2, hk=b2d, ik=ab2, jk=ab2, k2=b2, bl=cg2, cl=b3, dl=cg3, el=cg3, fg2l=fl, g3l=gl, hl=ab2d, il=acg2, jl=afgl, kl=fgl, l2=b2, bm=b3d, cm=ab2d, dm=b2, em=b2, fm=b2, gm=b3, hm=eh, im=ab3d, jm=ab3d, km=b3d, lm=ab3d, m2=b2, bn=b3d, cn=ab2d, dn=b2, en=b2, fn=b2, g2n=n, hn=b3, in=ab3d, jn=ab3d, kn=b3d, ln=cg3, mn=b2, n2=b2, bo=cg2, co=b3, do=cg3, fgo=fgl, g3o=go, eho=cdf, io=acg2, jo=afgl, lo=b2, no=ab3d, o2=b2, b2p=b3d, cp=ab3d, bdp=acdf, ep=b3, fp=b3, gp=acdf, hp=b2, ip=abp, jp=abp, kp=b2d, lp=ab2d, mp=b3, np=b3, op=ab2d, p2=b2, bq=b3d, cq=cf, dq=df, eq=b2, fq=b2, gq=b3, hq=b3, iq=ab3d, jq=ab3d, kq=b3d, lq=ab3d, mq=b2, nq=b2, oq=ab3d, pq=b3, q2=b2, b2r=ab3d, bcr=acf, bdr=adf, er=ab3, fr=ab3, gr=adf, hr=ab2, ir=b2d, jr=b2d, kr=ab2d, lr=b2d, mr=ab3, nr=ab3, or=b2d, pr=ab2, qr=ab3, r2=b2, b3s=bs, bcs=abs, es=b2ds, fs=b2ds, gs=bds, hs=bds, is=abs, js=abs, ks=bs, ls=abs, ms=b2ds, ns=b2ds, os=abs, ps=bds, qs=b2ds, rs=abds, s2=b2, b2t=t, ct=at, et=dt, ft=dt, gt=bdt, ht=bdt, it=abt, jt=abt, kt=bt, lt=abt, mt=dt, nt=dt, ot=abt, pt=bdt, qt=dt, rt=abdt, t2=b2>

P = {a, b2, af, adf, g, acg, ag2, g3, acg3, al, ao, eo, fo, ako, mo, abp, aq, ds, acds}

Phi = 1 a a 1 b b b ab 1 a b2 c ab b b d e f b2 g h i b abc e ab2 b2 ab2 b2 j k b3 b3 fg2 ab2 cg2 b3d b3d b3d l m n b2d cdf ab2 b3d b3d ab3 b3 o b2 ab2 cdf cg2 ab3 p ab3 b2d b2d q cdf r b3d ab3 ab3 s b2d fgl ko ab2 acg2 b3 ab3 ab3 b2d b2d ko cg2 b3d b3d b3d ab2d b2d b2d b2d ab2 ab3d b3d b3d ab3 ab3 ab3 ab2 ab2 ab2 b3d ab3d b3d ab3 b2d b2d ab2d b3d ab3d b3d ab3d b2s b2d b2d ab2d bs ab2 b2 ab3d b2s b2s b2d b2d ab2d bs b3d b3d b3d ab2d b2d b2d b2d bs ab3d b3d b3d b2s b2s b2d b2d ab3 bs b3d ab3d ab2 b2s b2d b2d ab2d b3d b3d b3d ab3d ab2 b2d b2d ab2d ab3 ab3 b3d ab2 ab2 ab2 b2d b2d ab3 ab3 b3d b3d b3d ab2d b2d b2d b2d bs ab3 b3d b3d ab2 ab2 b2d b3 ab3 bs b3d ab2s ab2 b2d b2d b2d ab2d b3d b3d b3d ab2 ab2 b2d b2d ab3 ab3 ab3 b2s ab2 b2 ab2 b2d b3 b3 ab3 b3d b3d ab2 b2ds b2d b2d b3 b3 ab3 b3d b2 ab2 b2 ab3 b3 ab3 b3 b2ds ab2 ab2 b2s bds b2d ab3 bs b2ds abs ab2 ab2 b2s bds b3 ab3 ab3 b2 ab2 ab2 ab2 b2s b3 ab3 ab3 b2ds abs b3d ab2 b3d bds b3 t ab3 b2ds b2 ab2 b2s ab3 b3 ab3 t b2d ab2 ab2 bds b3d b3d ab3 b2d b2d b2d ab2 ab2 b3d b3 ab3 ab3 ab3 b2 ab2 ab2 ab2 b3d b3d ab3 ab3 b2d b2ds ab2 ab3d b3d bds ab3 t b2d b2ds at ab2 t ab3 ab2s ab3 b2d b2d ab2 ab2 b3d b3d b3d abds b2d b2d abs bs ab2 b3d b3d b2s ab3 ab3 bs bs ab2 ab2 b3d b3d ab3 ab3 ab2d b2d abs ab3d ab3d b3d ab2s b2s ab2d ab2d abs ab2 ab3d ab2s ab2s ab3 ab2d ab2d ab2d bs b3d ab3d ab3d b2s b2d ab2d ab2d bs abs ab3d t b2s b2s ab3 abt bs bs b3d ab3d at b2s b2d ab2d ab2d b3d ab3d ab3d ab3d ab2s b2s ab2d ab2d abs ab3 ab3d ab2 ab2s ab2 b2s bt abs ab3 b3d ab3d ab3d ab2d ab2d ab2d bt bs abs b2ds ab2ds ab2s b2s at b3 ab3 bs abs at t b2s b2d abds ab2d b3d b3d ab2ds at t b2d b2d abs bt ab3 bs ab2s ab2s ab2 b2d bt abt ab3 b3d b3d t ab2d bds b2d ab3 abt ab3 b3d b3d t t at b3 bt bt b2ds ab2ds t b2s bds bds abds b3d b3d b2ds at t bds bds abds abt bs bs ab2 at t b2s bds abds dt b2ds b2ds b2ds bdt bds bds abds dt ab3 b2ds b2 t t bds bds st bt b2ds b2ds bst bdt bds bds bds dt b2d b2d at t bdt bds b3 abt st b2ds ab2 at t bds b3d ab2s adt b2ds b2ds b2d abdt b3d bds bds dt bt b2ds ab2 bst bs bds b3 b2s bt b2ds b2ds bst bs bds abds ab2s dt b2ds ab2ds abs abdt bs abds b2s b2s ab3 bt abs bs bs bdt st b2s b2s abt adt ab2d abdt bds abdt b2s b2s adt ab2ds b2d bs bs ab3 b2s b2s t bt abt bs bs bdt dst b2s b2s dt bt bs bs bs t b2s b2s b2s bt abs bs bs at st b2s ab2s ast ab2d bs abs abdt at b2s b2s ab2s ab2d bs bs ab3 t t ab2 ab2s bt ab2d bs bs dst ast b2s b2s bdst bt bs ab3d bs t ab2s b2s b2s bt abs bs bs at t b2s ab2s ast abt bs b3d ab2ds at b2s b2s ab2s abt abs bs bs at t b2s b2s bt abs bs b3d dst

Monoid Structure

Idempotent  |G|  |Arch|
122
b2 *32140
g246