Details Page for 0.1163

Complete Solution is Known:

Period:  
Preperiod:  
Quotient Size:   1140
P-Portion Size:   19
Tame?   No

MSV File: q-0.1163.msv

Growth Pattern:

Heap   Q-Size   P-Size
121
462
1182
15122
17244
19327
39508
498013
559415
599616
6111617
6513219
25314819
66618019
139924419
315437219
602062819
12234114019

(Click on a heap to see details)

Details for Q666(0.1163):

Q = <a,b,c,d,e,f,g,h,i,j,k,l,m,n,o,p,q,r,s,t,u | a2=1, b4=b2, b2c=ab2, c2=b2, d2=b2, be=b3d, ce=ab2d, de=b2, e2=b2, bf=b3d, ef=b2, f2=b2, b2g=b3d, bcg=ab2d, bdg=b2, cdg=ab3, eg=dg, cfg=ab3, dfg=b3d, bg2=dg, dg2=bg, fg3=fg, g4=g2, bh=b2d, ch=ab3d, dh=b3, fh=eh, gh=b2, h2=b2, bi=ab2, ci=b3, ei=ab3d, fi=ab3d, gi=abg, hi=ab2d, i2=b2, bj=ab2, cj=b3, dj=di, ej=ab3d, fj=ab3d, gj=afg2, hj=ab2d, ij=b2, j2=b2, bk=b2, ck=ab3, dk=b3d, ek=b3d, fk=b3d, gk=fg2, hk=b2d, ik=ab2, jk=ab2, k2=b2, bl=cg2, cl=b3, dl=cg3, el=cg3, fg2l=fl, g3l=gl, hl=ab2d, il=acg2, jl=afgl, kl=fgl, l2=b2, bm=b3d, cm=ab2d, dm=b2, em=b2, fm=b2, gm=b3, hm=eh, im=ab3d, jm=ab3d, km=b3d, lm=ab3d, m2=b2, bn=b3d, cn=ab2d, dn=b2, en=b2, fn=b2, g2n=n, hn=b3, in=ab3d, jn=ab3d, kn=b3d, ln=cg3, mn=b2, n2=b2, bo=cg2, co=b3, do=cg3, fgo=fgl, g3o=go, eho=cdf, io=acg2, jo=afgl, lo=b2, no=ab3d, o2=b2, b2p=b3d, cp=ab3d, bdp=acdf, ep=b3, fp=b3, gp=acdf, hp=b2, ip=abp, jp=abp, kp=b2d, lp=ab2d, mp=b3, np=b3, op=ab2d, p2=b2, bq=b3d, cq=cf, dq=df, eq=b2, fq=b2, gq=b3, hq=b3, iq=ab3d, jq=ab3d, kq=b3d, lq=ab3d, mq=b2, nq=b2, oq=ab3d, pq=b3, q2=b2, b2r=ab3d, bcr=acf, bdr=adf, er=ab3, fr=ab3, gr=adf, hr=ab2, ir=b2d, jr=b2d, kr=ab2d, lr=b2d, mr=ab3, nr=ab3, or=b2d, pr=ab2, qr=ab3, r2=b2, b3s=bs, bcs=abs, es=b2ds, fs=b2ds, gs=bds, hs=bds, is=abs, js=abs, ks=bs, ls=abs, ms=b2ds, ns=b2ds, os=abs, ps=bds, qs=b2ds, rs=abds, s2=b2, b2t=t, ct=at, et=dt, ft=dt, gt=bdt, ht=bdt, it=abt, jt=abt, kt=bt, lt=abt, mt=dt, nt=dt, ot=abt, pt=bdt, qt=dt, rt=abdt, t2=b2, b2u=u, cu=au, eu=du, fu=du, gu=bdu, hu=bdu, iu=abu, ju=abu, ku=bu, lu=abu, mu=du, nu=du, ou=abu, pu=bdu, qu=du, ru=abdu, u2=b2>

P = {a, b2, af, adf, g, acg, ag2, g3, acg3, al, ao, eo, fo, ako, mo, abp, aq, ds, acds}

Phi = 1 a a 1 b b b ab 1 a b2 c ab b b d e f b2 g h i b abc e ab2 b2 ab2 b2 j k b3 b3 fg2 ab2 cg2 b3d b3d b3d l m n b2d cdf ab2 b3d b3d ab3 b3 o b2 ab2 cdf cg2 ab3 p ab3 b2d b2d q cdf r b3d ab3 ab3 s b2d fgl ko ab2 acg2 b3 ab3 ab3 b2d b2d ko cg2 b3d b3d b3d ab2d b2d b2d b2d ab2 ab3d b3d b3d ab3 ab3 ab3 ab2 ab2 ab2 b3d ab3d b3d ab3 b2d b2d ab2d b3d ab3d b3d ab3d b2s b2d b2d ab2d bs ab2 b2 ab3d b2s b2s b2d b2d ab2d bs b3d b3d b3d ab2d b2d b2d b2d bs ab3d b3d b3d b2s b2s b2d b2d ab3 bs b3d ab3d ab2 b2s b2d b2d ab2d b3d b3d b3d ab3d ab2 b2d b2d ab2d ab3 ab3 b3d ab2 ab2 ab2 b2d b2d ab3 ab3 b3d b3d b3d ab2d b2d b2d b2d bs ab3 b3d b3d ab2 ab2 b2d b3 ab3 bs b3d ab2s ab2 b2d b2d b2d ab2d b3d b3d b3d ab2 ab2 b2d b2d ab3 ab3 ab3 b2s ab2 b2 ab2 b2d b3 b3 ab3 b3d b3d ab2 b2ds b2d b2d b3 b3 ab3 b3d b2 ab2 b2 ab3 b3 ab3 b3 b2ds ab2 ab2 b2s bds b2d ab3 bs b2ds abs ab2 ab2 b2s bds b3 ab3 ab3 b2 ab2 ab2 ab2 b2s b3 ab3 ab3 b2ds abs b3d ab2 b3d bds b3 t ab3 b2ds b2 ab2 b2s ab3 b3 ab3 t b2d ab2 ab2 bds b3d b3d ab3 b2d b2d b2d ab2 ab2 b3d b3 ab3 ab3 ab3 b2 ab2 ab2 ab2 b3d b3d ab3 ab3 b2d b2ds ab2 ab3d b3d bds ab3 t b2d b2ds at ab2 t ab3 ab2s ab3 b2d b2d ab2 ab2 b3d b3d b3d abds b2d b2d abs bs ab2 b3d b3d b2s ab3 ab3 bs bs ab2 ab2 b3d b3d ab3 ab3 ab2d b2d abs ab3d ab3d b3d ab2s b2s ab2d ab2d abs ab2 ab3d ab2s ab2s ab3 ab2d ab2d ab2d bs b3d ab3d ab3d b2s b2d ab2d ab2d bs abs ab3d t b2s b2s ab3 abt bs bs b3d ab3d at b2s b2d ab2d ab2d b3d ab3d ab3d ab3d ab2s b2s ab2d ab2d abs ab3 ab3d ab2 ab2s ab2 b2s bt abs ab3 b3d ab3d ab3d ab2d ab2d ab2d bt bs abs b2ds ab2ds ab2s b2s at b3 ab3 bs abs at t b2s b2d abds ab2d b3d b3d ab2ds at t b2d b2d abs bt ab3 bs ab2s ab2s ab2 b2d bt abt ab3 b3d b3d t ab2d bds b2d ab3 abt ab3 b3d b3d t t at b3 bt bt b2ds ab2ds t b2s bds bds abds b3d b3d b2ds at t bds bds abds abt bs bs ab2 at t b2s bds abds dt b2ds b2ds b2ds bdt bds bds abds dt ab3 b2ds b2 t t bds bds st bt b2ds b2ds bst bdt bds bds bds dt b2d b2d at t bdt bds b3 abt st b2ds ab2 at t bds b3d ab2s adt b2ds b2ds b2d abdt b3d bds bds dt bt b2ds ab2 bst bs bds b3 b2s bt b2ds b2ds bst bs bds abds ab2s dt b2ds ab2ds abs abdt bs abds b2s b2s ab3 bt abs bs bs bdt st b2s b2s abt adt ab2d abdt bds abdt b2s b2s adt ab2ds b2d bs bs ab3 b2s b2s t bt abt bs bs bdt dst b2s b2s dt bt bs bs bs t b2s b2s b2s bt abs bs bs at st b2s ab2s ast ab2d bs abs abdt at b2s b2s ab2s ab2d bs bs ab3 t t ab2 ab2s bt ab2d bs bs dst ast b2s b2s bdst bt bs ab3d bs t ab2s b2s b2s bt abs bs bs at t b2s ab2s ast abt bs b3d ab2ds at b2s b2s ab2s abt abs bs bs at t b2s b2s bt abs bs b3d dst u at b2s bds abds abt adst bs u at u ab2 bs abs abt b2ds adst t b2s abds abds abds bt ab2ds ab2ds at bdt bdst abdst abds abdst abt bs ab2s at at b2s abds abds bt b2ds b2ds b2ds ab2d b2d bds abds abt dt bs b2ds at bdt abds ast abt abt b2ds b2ds b2ds at bds bds bds bt ab2ds b2ds b2d bst bdt bds bds ast bt bs ab2ds bst t bds bds abds bt b2ds b2ds b2ds b2d bds bds abds abt adt b2ds b2ds bst bst bds bds st abt ast b2ds abs bdt bds bds bds dt ab2ds b2ds b2ds abst at bds bds st b2s b2ds abs bs abst abdt bds b2s ast dt au ab2ds bdt bds bu ab2s b2s adt ab2ds u bs bst t b2s b2s bt dt abst bs bs t bdt abds adt u dt bs bs bs abdt b2s ab2s ab2s bt abs bs abs t st b2s b2s adt bdst bs bdt bs dst b2s b2s ab2s dt abs bs bs ab3 b2s ab2s b2s bt abst bs bs dst dst ab2s b2s b3d bt bs bs bs bdt b2s ab2s b2s b2 bt bs bs ab3 t ab2s b2s bdst bdst dt bs abst at b2s b2s ab2s adt bs bs bs t b2s b2s ab2s bt ab2 bs bs dst abdt ab2s b2s bds abds u abs bs ab2ds bu u b2s bt du abs bs ab3 at du b2s abds abds bt ab2ds b2ds ab2ds dst bdst bds abds u st bs ab2ds bdt bst au abds ab2 dt abdu adst b2ds bdt bds b3d ab3d bt bu bs ab2ds su u au bds abds abdu b2ds b2ds dst t bds abds st bt ab2ds b2ds ab2ds adst bst abdst bds ast st bu ab2ds ab3 at abds abds abds bt ab2ds ab2ds b2d bdt bdt abdt bds st dt ab2ds b2ds bst abst abdt abdu st st adt ab2ds b2ds at abdt abds bds b3d ab2ds b2ds ab2ds abdt bst abds abds ast ab2 ab2ds b2ds bs t abds su ast st b2ds absu ab2ds abdt abdu bds absu ast ast adu ab2ds bst bst at b2s b2s b2 ast absu abs abst abdu dsu abds b2s b3d absu ab2ds bs bs abdu au st b2s bt su ab3 b3 at dsu ab2s ab2s bt adu bst adst bs bu bu b2s ab2 bt u bs asu ab3 b2s b2s ab2s au bt bst bs dst adst abdu b2s abt bdst absu asu bs t dsu tu ab2s bt bdsu abs bs b2d absu bu ab2s bdst bdst su bs dst dst dst bsu b2s bdst atu u asu ab3 dtu b2s tu bdst btu bdsu bs ab2d dst tu asu ab3d b3d adt adsu dst abdt abdt ab2s au bt bdst abs adst dst ab2ds atu adu b3d ab3d dt abs b2ds ab2ds dst du abdst bds abds su bu ab2d abdt u u bdst abds btu asu ab2ds b2d b2ds u bdst ab3d abtu bu dst b2d bdt u au b3d abds abdu asu asu ab2ds u bds bdst bds b3d bu dst b2d ab2ds bdst abdst abdst btu bu bu ab2ds bdt abst atu bds abds adt bu adst b2ds abst bdt abdst abds abtu bu ab2ds adst bdt abst absu btu ab2 st abt tu b2ds bst bst abdu bds adt bu abu adu bst bdt bdtu abu ab2s bu atu abdsu bst bst absu dsu ast bt abt atu dsu b2d bst astu abtu st asu su astu abst bs abtu dsu ab2 ab2 ast absu bst bs abst dsu abdu b2s dtu btu stu bst bs bdtu abu ast st st dtu bst b3 bst dsu ast ab2 abt adu du ab3 dst abtu bdu ast b2s atu u bst b3 abst dsu st b2 b2s bdsu bst bs adst abdu bdu b2d abdst abdst bdsu bst bst btu dsu ast tu b2s adu bst abst abs dsu dstu tu ab3d bdst du bstu dst dst abdu u ast abdst bdsu bdsu btu abs abdu bdu ab2s b2s abdst bdsu abtu b2d bdu abdstu u tu bdst bdsu asu dst dst dsu ab2ds absu b2s adu bdtu bs abs adst dstu atu ab3d abds stu bu b2d b2d abdt adsu abdst ab3d bdst btu asu ab2d ab2ds u atu bdst bdst abstu bu adst ab2ds

Monoid Structure

Idempotent  |G|  |Arch|
122
b2 *64172
g246