Details Page for 0.2412

Complete Solution is Known:

Period:  
Preperiod:  
Quotient Size:   420
P-Portion Size:   105
Tame?   No

MSV File: q-0.2412.msv

Growth Pattern:

Heap   Q-Size   P-Size
221
362
1082
14123
18184
22246
26327
304010
345011
386015
427216
468421
509822
5411228
5812829
6214436
6616237
7018045
7420046
7822055
8224256
8626466
9028867
9431278
9833879
10236491
10639292
110420105

(Click on a heap to see details)

Details for Q106(0.2412):

Q = <a,b,c,d,e,f,g,h,i,j,k,l,m,n,o,p,q,r,s,t,u,v,w,x,y,z,A | a2=1, b27=b25, bc=ab3, c2=b4, b2d=ab5, cd=b5, d2=b6, b3e=ab7, ce=ab2e, de=b7, e2=b8, b4f=ab9, cf=ab2f, df=ab3f, ef=b9, f2=b10, b5g=ab11, cg=ab2g, dg=ab3g, eg=ab4g, fg=b11, g2=b12, b6h=ab13, ch=ab2h, dh=ab3h, eh=ab4h, fh=ab5h, gh=b13, h2=b14, b7i=ab15, ci=ab2i, di=ab3i, ei=ab4i, fi=ab5i, gi=ab6i, hi=b15, i2=b16, b8j=ab17, cj=ab2j, dj=ab3j, ej=ab4j, fj=ab5j, gj=ab6j, hj=ab7j, ij=b17, j2=b18, b9k=ab19, ck=ab2k, dk=ab3k, ek=ab4k, fk=ab5k, gk=ab6k, hk=ab7k, ik=ab8k, jk=b19, k2=b20, b10l=ab21, cl=ab2l, dl=ab3l, el=ab4l, fl=ab5l, gl=ab6l, hl=ab7l, il=ab8l, jl=ab9l, kl=b21, l2=b22, b11m=ab23, cm=ab2m, dm=ab3m, em=ab4m, fm=ab5m, gm=ab6m, hm=ab7m, im=ab8m, jm=ab9m, km=ab10m, lm=b23, m2=b24, b12n=ab25, cn=ab2n, dn=ab3n, en=ab4n, fn=ab5n, gn=ab6n, hn=ab7n, in=ab8n, jn=ab9n, kn=ab10n, ln=ab11n, mn=b25, n2=b26, b13o=ab25, co=ab2o, do=ab3o, eo=ab4o, fo=ab5o, go=ab6o, ho=ab7o, io=ab8o, jo=ab9o, ko=ab10o, lo=ab11o, mo=ab12o, no=b25, o2=b26, b12p=b11o, cp=ab2p, dp=ab3p, ep=ab4p, fp=ab5p, gp=ab6p, hp=ab7p, ip=ab8p, jp=ab9p, kp=ab10p, lp=ab11p, mp=ab11o, np=ab12o, op=b25, p2=b26, b11q=b10p, cq=ab2q, dq=ab3q, eq=ab4q, fq=ab5q, gq=ab6q, hq=ab7q, iq=ab8q, jq=ab9q, kq=ab10q, lq=ab10p, mq=ab11p, nq=ab11o, oq=ab12o, pq=b25, q2=b26, b10r=b9q, cr=ab2r, dr=ab3r, er=ab4r, fr=ab5r, gr=ab6r, hr=ab7r, ir=ab8r, jr=ab9r, kr=ab9q, lr=ab10q, mr=ab10p, nr=ab11p, or=ab11o, pr=ab12o, qr=b25, r2=b26, b9s=b8r, cs=ab2s, ds=ab3s, es=ab4s, fs=ab5s, gs=ab6s, hs=ab7s, is=ab8s, js=ab8r, ks=ab9r, ls=ab9q, ms=ab10q, ns=ab10p, os=ab11p, ps=ab11o, qs=ab12o, rs=b25, s2=b26, b8t=b7s, ct=ab2t, dt=ab3t, et=ab4t, ft=ab5t, gt=ab6t, ht=ab7t, it=ab7s, jt=ab8s, kt=ab8r, lt=ab9r, mt=ab9q, nt=ab10q, ot=ab10p, pt=ab11p, qt=ab11o, rt=ab12o, st=b25, t2=b26, b7u=b6t, cu=ab2u, du=ab3u, eu=ab4u, fu=ab5u, gu=ab6u, hu=ab6t, iu=ab7t, ju=ab7s, ku=ab8s, lu=ab8r, mu=ab9r, nu=ab9q, ou=ab10q, pu=ab10p, qu=ab11p, ru=ab11o, su=ab12o, tu=b25, u2=b26, b6v=b5u, cv=ab2v, dv=ab3v, ev=ab4v, fv=ab5v, gv=ab5u, hv=ab6u, iv=ab6t, jv=ab7t, kv=ab7s, lv=ab8s, mv=ab8r, nv=ab9r, ov=ab9q, pv=ab10q, qv=ab10p, rv=ab11p, sv=ab11o, tv=ab12o, uv=b25, v2=b26, b5w=b4v, cw=ab2w, dw=ab3w, ew=ab4w, fw=ab4v, gw=ab5v, hw=ab5u, iw=ab6u, jw=ab6t, kw=ab7t, lw=ab7s, mw=ab8s, nw=ab8r, ow=ab9r, pw=ab9q, qw=ab10q, rw=ab10p, sw=ab11p, tw=ab11o, uw=ab12o, vw=b25, w2=b26, b4x=b3w, cx=ab2x, dx=ab3x, ex=ab3w, fx=ab4w, gx=ab4v, hx=ab5v, ix=ab5u, jx=ab6u, kx=ab6t, lx=ab7t, mx=ab7s, nx=ab8s, ox=ab8r, px=ab9r, qx=ab9q, rx=ab10q, sx=ab10p, tx=ab11p, ux=ab11o, vx=ab12o, wx=b25, x2=b26, b3y=b2x, cy=ab2y, dy=ab2x, ey=ab3x, fy=ab3w, gy=ab4w, hy=ab4v, iy=ab5v, jy=ab5u, ky=ab6u, ly=ab6t, my=ab7t, ny=ab7s, oy=ab8s, py=ab8r, qy=ab9r, ry=ab9q, sy=ab10q, ty=ab10p, uy=ab11p, vy=ab11o, wy=ab12o, xy=b25, y2=b26, b2z=by, cz=aby, dz=ab2y, ez=ab2x, fz=ab3x, gz=ab3w, hz=ab4w, iz=ab4v, jz=ab5v, kz=ab5u, lz=ab6u, mz=ab6t, nz=ab7t, oz=ab7s, pz=ab8s, qz=ab8r, rz=ab9r, sz=ab9q, tz=ab10q, uz=ab10p, vz=ab11p, wz=ab11o, xz=ab12o, yz=b25, z2=b26, bA=z, cA=abz, dA=aby, eA=ab2y, fA=ab2x, gA=ab3x, hA=ab3w, iA=ab4w, jA=ab4v, kA=ab5v, lA=ab5u, mA=ab6u, nA=ab6t, oA=ab7t, pA=ab7s, qA=ab8s, rA=ab8r, sA=ab9r, tA=ab9q, uA=ab10q, vA=ab10p, wA=ab11p, xA=ab11o, yA=ab12o, zA=b25, A2=b26>

P = {a, b2, b4, b6, b8, b10, b12, b14, b16, b18, b20, b22, b24, b26, ad, abe, af, ab2f, abg, ab3g, ah, ab2h, ab4h, abi, ab3i, ab5i, aj, ab2j, ab4j, ab6j, abk, ab3k, ab5k, ab7k, al, ab2l, ab4l, ab6l, ab8l, abm, ab3m, ab5m, ab7m, ab9m, an, ab2n, ab4n, ab6n, ab8n, ab10n, abo, ab3o, ab5o, ab7o, ab9o, ab11o, ap, ab2p, ab4p, ab6p, ab8p, ab10p, abq, ab3q, ab5q, ab7q, ab9q, ar, ab2r, ab4r, ab6r, ab8r, abs, ab3s, ab5s, ab7s, at, ab2t, ab4t, ab6t, abu, ab3u, ab5u, av, ab2v, ab4v, abw, ab3w, ax, ab2x, aby, az}

Phi = 1 1 a b a b ab 1 ab b2 c b ab2 b3 d b2 ab3 b4 e b3 ab4 b5 f b4 ab5 b6 g b5 ab6 b7 h b6 ab7 b8 i b7 ab8 b9 j b8 ab9 b10 k b9 ab10 b11 l b10 ab11 b12 m b11 ab12 b13 n b12 ab13 b14 o b13 ab14 b15 p b14 ab15 b16 q b15 ab16 b17 r b16 ab17 b18 s b17 ab18 b19 t b18 ab19 b20 u b19 ab20 b21 v b20 ab21 b22 w b21 ab22 b23 x b22 ab23 b24 y b23 ab24 b25 z b24 ab25 b26 A b25 ab26 b25

Monoid Structure

Idempotent  |G|  |Arch|
122
b26 *4390