Period: | |
Preperiod: | |
Quotient Size: | 420 |
P-Portion Size: | 105 |
Tame? | No |
MSV File: q-0.2412.msv
Heap | Q-Size | P-Size |
2 | 2 | 1 |
3 | 6 | 2 |
10 | 8 | 2 |
14 | 12 | 3 |
18 | 18 | 4 |
22 | 24 | 6 |
26 | 32 | 7 |
30 | 40 | 10 |
34 | 50 | 11 |
38 | 60 | 15 |
42 | 72 | 16 |
46 | 84 | 21 |
50 | 98 | 22 |
54 | 112 | 28 |
58 | 128 | 29 |
62 | 144 | 36 |
66 | 162 | 37 |
70 | 180 | 45 |
74 | 200 | 46 |
78 | 220 | 55 |
82 | 242 | 56 |
86 | 264 | 66 |
90 | 288 | 67 |
94 | 312 | 78 |
98 | 338 | 79 |
102 | 364 | 91 |
106 | 392 | 92 |
110 | 420 | 105 |
(Click on a heap to see details)
Q = <a,b,c,d,e,f,g,h,i,j,k,l,m,n,o,p,q,r,s,t,u,v,w,x,y | a2=1, b25=b23, bc=ab3, c2=b4, b2d=ab5, cd=b5, d2=b6, b3e=ab7, ce=ab2e, de=b7, e2=b8, b4f=ab9, cf=ab2f, df=ab3f, ef=b9, f2=b10, b5g=ab11, cg=ab2g, dg=ab3g, eg=ab4g, fg=b11, g2=b12, b6h=ab13, ch=ab2h, dh=ab3h, eh=ab4h, fh=ab5h, gh=b13, h2=b14, b7i=ab15, ci=ab2i, di=ab3i, ei=ab4i, fi=ab5i, gi=ab6i, hi=b15, i2=b16, b8j=ab17, cj=ab2j, dj=ab3j, ej=ab4j, fj=ab5j, gj=ab6j, hj=ab7j, ij=b17, j2=b18, b9k=ab19, ck=ab2k, dk=ab3k, ek=ab4k, fk=ab5k, gk=ab6k, hk=ab7k, ik=ab8k, jk=b19, k2=b20, b10l=ab21, cl=ab2l, dl=ab3l, el=ab4l, fl=ab5l, gl=ab6l, hl=ab7l, il=ab8l, jl=ab9l, kl=b21, l2=b22, b11m=ab23, cm=ab2m, dm=ab3m, em=ab4m, fm=ab5m, gm=ab6m, hm=ab7m, im=ab8m, jm=ab9m, km=ab10m, lm=b23, m2=b24, b12n=ab23, cn=ab2n, dn=ab3n, en=ab4n, fn=ab5n, gn=ab6n, hn=ab7n, in=ab8n, jn=ab9n, kn=ab10n, ln=ab11n, mn=b23, n2=b24, b11o=b10n, co=ab2o, do=ab3o, eo=ab4o, fo=ab5o, go=ab6o, ho=ab7o, io=ab8o, jo=ab9o, ko=ab10o, lo=ab10n, mo=ab11n, no=b23, o2=b24, b10p=b9o, cp=ab2p, dp=ab3p, ep=ab4p, fp=ab5p, gp=ab6p, hp=ab7p, ip=ab8p, jp=ab9p, kp=ab9o, lp=ab10o, mp=ab10n, np=ab11n, op=b23, p2=b24, b9q=b8p, cq=ab2q, dq=ab3q, eq=ab4q, fq=ab5q, gq=ab6q, hq=ab7q, iq=ab8q, jq=ab8p, kq=ab9p, lq=ab9o, mq=ab10o, nq=ab10n, oq=ab11n, pq=b23, q2=b24, b8r=b7q, cr=ab2r, dr=ab3r, er=ab4r, fr=ab5r, gr=ab6r, hr=ab7r, ir=ab7q, jr=ab8q, kr=ab8p, lr=ab9p, mr=ab9o, nr=ab10o, or=ab10n, pr=ab11n, qr=b23, r2=b24, b7s=b6r, cs=ab2s, ds=ab3s, es=ab4s, fs=ab5s, gs=ab6s, hs=ab6r, is=ab7r, js=ab7q, ks=ab8q, ls=ab8p, ms=ab9p, ns=ab9o, os=ab10o, ps=ab10n, qs=ab11n, rs=b23, s2=b24, b6t=b5s, ct=ab2t, dt=ab3t, et=ab4t, ft=ab5t, gt=ab5s, ht=ab6s, it=ab6r, jt=ab7r, kt=ab7q, lt=ab8q, mt=ab8p, nt=ab9p, ot=ab9o, pt=ab10o, qt=ab10n, rt=ab11n, st=b23, t2=b24, b5u=b4t, cu=ab2u, du=ab3u, eu=ab4u, fu=ab4t, gu=ab5t, hu=ab5s, iu=ab6s, ju=ab6r, ku=ab7r, lu=ab7q, mu=ab8q, nu=ab8p, ou=ab9p, pu=ab9o, qu=ab10o, ru=ab10n, su=ab11n, tu=b23, u2=b24, b4v=b3u, cv=ab2v, dv=ab3v, ev=ab3u, fv=ab4u, gv=ab4t, hv=ab5t, iv=ab5s, jv=ab6s, kv=ab6r, lv=ab7r, mv=ab7q, nv=ab8q, ov=ab8p, pv=ab9p, qv=ab9o, rv=ab10o, sv=ab10n, tv=ab11n, uv=b23, v2=b24, b3w=b2v, cw=ab2w, dw=ab2v, ew=ab3v, fw=ab3u, gw=ab4u, hw=ab4t, iw=ab5t, jw=ab5s, kw=ab6s, lw=ab6r, mw=ab7r, nw=ab7q, ow=ab8q, pw=ab8p, qw=ab9p, rw=ab9o, sw=ab10o, tw=ab10n, uw=ab11n, vw=b23, w2=b24, b2x=bw, cx=abw, dx=ab2w, ex=ab2v, fx=ab3v, gx=ab3u, hx=ab4u, ix=ab4t, jx=ab5t, kx=ab5s, lx=ab6s, mx=ab6r, nx=ab7r, ox=ab7q, px=ab8q, qx=ab8p, rx=ab9p, sx=ab9o, tx=ab10o, ux=ab10n, vx=ab11n, wx=b23, x2=b24, by=x, cy=abx, dy=abw, ey=ab2w, fy=ab2v, gy=ab3v, hy=ab3u, iy=ab4u, jy=ab4t, ky=ab5t, ly=ab5s, my=ab6s, ny=ab6r, oy=ab7r, py=ab7q, qy=ab8q, ry=ab8p, sy=ab9p, ty=ab9o, uy=ab10o, vy=ab10n, wy=ab11n, xy=b23, y2=b24>
P = {a, b2, b4, b6, b8, b10, b12, b14, b16, b18, b20, b22, b24, ad, abe, af, ab2f, abg, ab3g, ah, ab2h, ab4h, abi, ab3i, ab5i, aj, ab2j, ab4j, ab6j, abk, ab3k, ab5k, ab7k, al, ab2l, ab4l, ab6l, ab8l, abm, ab3m, ab5m, ab7m, ab9m, an, ab2n, ab4n, ab6n, ab8n, ab10n, abo, ab3o, ab5o, ab7o, ab9o, ap, ab2p, ab4p, ab6p, ab8p, abq, ab3q, ab5q, ab7q, ar, ab2r, ab4r, ab6r, abs, ab3s, ab5s, at, ab2t, ab4t, abu, ab3u, av, ab2v, abw, ax}
Phi = 1 1 a b a b ab 1 ab b2 c b ab2 b3 d b2 ab3 b4 e b3 ab4 b5 f b4 ab5 b6 g b5 ab6 b7 h b6 ab7 b8 i b7 ab8 b9 j b8 ab9 b10 k b9 ab10 b11 l b10 ab11 b12 m b11 ab12 b13 n b12 ab13 b14 o b13 ab14 b15 p b14 ab15 b16 q b15 ab16 b17 r b16 ab17 b18 s b17 ab18 b19 t b18 ab19 b20 u b19 ab20 b21 v b20 ab21 b22 w b21 ab22 b23 x b22 ab23 b24 y b23 ab24 b23
Idempotent | |G| | |Arch| |
---|---|---|
1 | 2 | 2 |
b24 * | 4 | 336 |