Details Page for 0.2454

Complete Solution is Known:

Period:  
Preperiod:  
Quotient Size:   1006
P-Portion Size:   80
Tame?   No

MSV File: q-0.2454.msv

Growth Pattern:

Heap   Q-Size   P-Size
221
362
7102
10265
13506
189814
1914619
2221025
2622625
2724225
3755853
3857453
3962655
5064255
5977868
6089477
6691080
13894280
407100680

(Click on a heap to see details)

Details for Q66(0.2454):

Q = <a,b,c,d,e,f,g,h,i,j,k,l,m,n,o,p,q,r,s,t,u | a2=1, b4=b2, bc2=b, c3=c, b2d=ab2c, c2d=d, d4=acd3, b2e=b2c, c2e=e, bd2e=b3c, d3e=acd2e, e2=b2, b2f=ab2, c2f=f, bdf=abcde, d3f=acd2f, bef=bcde, d2ef=acdef, f2=b2, c2g=g, bdg=abcg, beg=b3cg, bfg=ab3g, b2g2=b2, d2g2=acdg2, defg2=acefg2, bg3=bg, deg3=acd2eg, dfg3=acd2fg, efg3=acdefg, g4=g2, bh=ab2, c2h=h, dh=abcde, eh=bcde, fh=abde, gh=ab3g, h2=b2, b2i=ab2, c2i=i, bdi=abcde, d2i=ab2, bei=bcde, dei=b2, fi=b2, bgi=ab3g, egi=adgi, g2i=ab2, hi=abde, i2=b2, b2j=ab3g, c2j=j, d3j=acd2j, bdej=b2g, d2ej=acdej, bfj=abcej, d2fj=acdfj, defj=acefj, bgj=ab2, degj=b3, fgj=acegj, g2j=abg, hj=abcej, ij=b3g, bej2=aegj, gj2=abj, bj3=bj, ej3=ej, fj3=fj, dj4=dj2, j5=j3, bk=b3g, c2k=k, dgk=acgk, egk=aefg2, fgk=ab2, g3k=gk, hk=ab3g, ik=gi, jk=ab3, dk2=ack2, gk2=b2g, fk3=d2fk, k4=k2, b2l=ab3c, c2l=l, bdl=abcl, bel=ab2, del=b3c, bfl=b2c, dfl=bde, efl=b3, bgl=acdefg, dgl=acgl, egl=ab3g, fgl=b3cg, hl=b2c, bil=b2c, dil=bde, eil=b3, gil=b3cg, bjl=efj, ejl=abcej, fjl=bej, dkl=ackl, ekl=ab3g, fkl=b3cg, gkl=ab3c, k2l=ab3c, l2=b2, bm=ab2, c2m=m, d2m=acdm, em=ab3c, fm=b3, gm=ab3g, hm=b2, im=b3, j3m=jm, km=ab3g, dlm=aclm, m2=b2, bn=ajlm, c2n=n, d2n=acdn, en=b2g, fn=ab2cg, dgn=acgn, g2n=cdefg, hn=ab3cg, in=ab2cg, gjn=jlm, j3n=jn, kn=b2c, ln=cjlm, mn=ab3cg, n2=b2, bo=b3g, c2o=o, d3o=acd2o, eo=dgi, fo=ab2g, go=b2, ho=ab3g, io=ab2g, jo=cegj, ko=b2, lo=ab3cg, mo=ab3g, no=b2c, o2=b2, b2p=ab2cg, c2p=p, bd2p=ab3cg, d3p=acd2p, bep=abdp, dep=b2cg, bfp=bcdp, dfp=ab2g, efp=b2g, bgp=ab3c, d2gp=efg2, fgp=acegp, dg2p=defg, hp=bcdp, ip=b2cg, fjp=acejp, gjp=abp, bj2p=bp, d2j2p=ab2cg, ej2p=adj2p, dj3p=aejp, kp=ab2c, blp=b2g, elp=bcdp, flp=abdp, glp=b3, dj2lp=abcdp, j3lp=abcjp, mp=bcdp, np=acdjlp, op=adjlp, p2=b2, bq=ab2g, c2q=q, dq=b3cg, eq=ab3cg, fq=b3g, gq=ab3, hq=b2g, iq=b3g, jq=b2, kq=ab3, mq=b2g, nq=ab3c, oq=ab3, q2=b2, b2r=b3cg, c2r=r, dr=acr, ber=b2g, bfr=ab2cg, gr=d2jp, hr=ab2cg, ir=ab3cg, jr=ab2c, kr=d2jp, blr=efr, elr=ab2cg, flr=b2g, mr=abr, nr=b3, or=b3c, pr=acd2jp, qr=ab2c, r2=b2, b2s=ab3c, c2s=s, bd2s=clpq, d3s=b3, bdes=aclpq, d2es=ab3, dfs=cd2s, efs=cdes, bgs=ab2cg, dgs=b3g, egs=ab3g, g2s=ab3c, hs=bcds, is=fs, js=b2cg, ks=gs, bls=b3, dls=bces, els=aclpq, gls=b2g, ms=b2c, ns=ab3g, os=ab3cg, ps=b3g, qs=b2cg, rs=ab2g, s2=b2, b2t=ab2g, c2t=t, d3t=b2cg, bdet=abd2t, d2et=ab2cg, dft=cd2t, eft=cdet, bgt=ab3, d2gt=lpq, degt=alpq, fgt=bcfs, g2t=ab2g, ht=bcdt, it=ft, jt=b3, kt=gt, blt=b2cg, dlt=bcet, elt=abd2t, glt=b3c, mt=b3g, nt=clpq, ot=abcfs, pt=bfs, qt=b3, rt=ab3c, st=b3cg, t2=b2, b3u=bu, c2u=u, bdu=abcu, d2u=acdu, eu=b2cu, fu=ab2u, b2gu=gu, dgu=acgu, g2u=b2u, hu=abu, iu=ab2u, bju=agu, dju=bcgu, gju=abu, j3u=ju, ku=gu, lu=abcu, mu=abu, nu=cgu, ou=gu, pu=acgu, qu=abgu, ru=bcgu, su=abcu, tu=agu, u2=b2>

P = {a, b2, c2, acd, d2, acd3, ce, ade, cd2e, acf, df, acd2f, cfg, adfg, cd2fg, g2, acdg2, ceg2, adeg2, acfg2, dfg2, cfg3, ai, cdi, acei, fj, acdfj, cefj, j2, acdj2, d2j2, cej2, adej2, acfj2, dfj2, j4, afk, cdfk, ad2fk, cgk, k2, cek2, acfk2, acl, dl, acd2l, d3l, acgl, acg2l, acg3l, acj2l, dj2l, acd2j2l, acj4l, akl, gp, g3p, abjp, alp, cdlp, ad2lp, cjlp, aj2lp, afr, acefr, bcs, abds, bes, afgs, als, abct, bdt, abcd2t, abet, bcft, lt, aflt, au, cdu, aj2u}

Phi = 1 1 a b a b ab c d e f bc abc g h bce i b j k ch be l b2c ab2c gjl m n ab2 bd2 ab2 o ab3g b2c ab2c b3 b2cg p q r ab2 b3 ab2 b3 ab3 b2c abdp b3g ab2 b3c b2u b2g bcdp b3 ab2 b3 ab3g b2g b2u s t b3cg ab2c b2c ab3 b2cg u b3 b2u b2g ab3g abu b2c b3 b2cg ab2cg b2u b3cg ab2 abcu ab2 b2g ab3 b2c ab3g b3g ab2 b3cg ab3cg b2g b2u ab2cu ab2 b3 ab3g b2g b2u ab3c ab2g b3cg agu abu ab3g b2cg bgu b3 ab2g b2g ab3g abu agu b3 b2cg ab2cg b2u b3cg ab2 abcu ab2 ab2cu ab3 ab3g b2u agu ab2 b3cg ab3cg ab3c b2cu abcgu b2cu b2c ab3g b2g b2u ab3c ab2g b3cg

Monoid Structure

Idempotent  |G|  |Arch|
122
b2 *32796
c244
acd3412
g2812
acdg2820
d2j2824
j4816
k2824