Period: | |
Preperiod: | |
Quotient Size: | 512 |
P-Portion Size: | 121 |
Tame? | No |
MSV File: q-0.3261.msv
Heap | Q-Size | P-Size |
1 | 2 | 1 |
3 | 6 | 2 |
9 | 8 | 2 |
12 | 12 | 3 |
14 | 18 | 4 |
16 | 24 | 6 |
18 | 32 | 7 |
20 | 40 | 10 |
22 | 50 | 11 |
24 | 60 | 15 |
26 | 72 | 16 |
28 | 84 | 21 |
30 | 98 | 22 |
32 | 112 | 28 |
34 | 128 | 29 |
36 | 144 | 36 |
38 | 162 | 37 |
40 | 180 | 45 |
42 | 200 | 46 |
44 | 220 | 55 |
46 | 242 | 56 |
48 | 264 | 66 |
50 | 288 | 67 |
52 | 312 | 78 |
54 | 338 | 79 |
56 | 364 | 91 |
58 | 392 | 92 |
60 | 420 | 105 |
62 | 450 | 106 |
64 | 480 | 120 |
66 | 512 | 121 |
(Click on a heap to see details)
Q = <a,b,c,d,e,f,g,h,i,j,k,l,m,n,o,p,q,r,s,t,u,v,w,x,y,z | a2=1, b26=b24, bc=ab3, c2=b4, b2d=ab5, cd=b5, d2=b6, b3e=b7, ce=ab2e, de=ab7, e2=b8, b4f=ab9, cf=ab2f, df=ab3f, ef=ab9, f2=b10, b5g=b11, cg=ab2g, dg=ab3g, eg=b4g, fg=ab11, g2=b12, b6h=ab13, ch=ab2h, dh=ab3h, eh=b4h, fh=ab5h, gh=ab13, h2=b14, b7i=b15, ci=ab2i, di=ab3i, ei=b4i, fi=ab5i, gi=b6i, hi=ab15, i2=b16, b8j=ab17, cj=ab2j, dj=ab3j, ej=b4j, fj=ab5j, gj=b6j, hj=ab7j, ij=ab17, j2=b18, b9k=b19, ck=ab2k, dk=ab3k, ek=b4k, fk=ab5k, gk=b6k, hk=ab7k, ik=b8k, jk=ab19, k2=b20, b10l=ab21, cl=ab2l, dl=ab3l, el=b4l, fl=ab5l, gl=b6l, hl=ab7l, il=b8l, jl=ab9l, kl=ab21, l2=b22, b11m=b23, cm=ab2m, dm=ab3m, em=b4m, fm=ab5m, gm=b6m, hm=ab7m, im=b8m, jm=ab9m, km=b10m, lm=ab23, m2=b24, b12n=ab25, cn=ab2n, dn=ab3n, en=b4n, fn=ab5n, gn=b6n, hn=ab7n, in=b8n, jn=ab9n, kn=b10n, ln=ab11n, mn=ab25, n2=b24, b12o=ab11n, co=ab2o, do=ab3o, eo=b4o, fo=ab5o, go=b6o, ho=ab7o, io=b8o, jo=ab9o, ko=b10o, lo=ab11o, mo=ab11n, no=ab25, o2=b24, b11p=ab10o, cp=ab2p, dp=ab3p, ep=b4p, fp=ab5p, gp=b6p, hp=ab7p, ip=b8p, jp=ab9p, kp=b10p, lp=b10o, mp=ab11o, np=ab11n, op=ab25, p2=b24, b10q=ab9p, cq=ab2q, dq=ab3q, eq=b4q, fq=ab5q, gq=b6q, hq=ab7q, iq=b8q, jq=ab9q, kq=ab9p, lq=b10p, mq=b10o, nq=ab11o, oq=ab11n, pq=ab25, q2=b24, b9r=ab8q, cr=ab2r, dr=ab3r, er=b4r, fr=ab5r, gr=b6r, hr=ab7r, ir=b8r, jr=b8q, kr=ab9q, lr=ab9p, mr=b10p, nr=b10o, or=ab11o, pr=ab11n, qr=ab25, r2=b24, b8s=ab7r, cs=ab2s, ds=ab3s, es=b4s, fs=ab5s, gs=b6s, hs=ab7s, is=ab7r, js=b8r, ks=b8q, ls=ab9q, ms=ab9p, ns=b10p, os=b10o, ps=ab11o, qs=ab11n, rs=ab25, s2=b24, b7t=ab6s, ct=ab2t, dt=ab3t, et=b4t, ft=ab5t, gt=b6t, ht=b6s, it=ab7s, jt=ab7r, kt=b8r, lt=b8q, mt=ab9q, nt=ab9p, ot=b10p, pt=b10o, qt=ab11o, rt=ab11n, st=ab25, t2=b24, b6u=ab5t, cu=ab2u, du=ab3u, eu=b4u, fu=ab5u, gu=ab5t, hu=b6t, iu=b6s, ju=ab7s, ku=ab7r, lu=b8r, mu=b8q, nu=ab9q, ou=ab9p, pu=b10p, qu=b10o, ru=ab11o, su=ab11n, tu=ab25, u2=b24, b5v=ab4u, cv=ab2v, dv=ab3v, ev=b4v, fv=b4u, gv=ab5u, hv=ab5t, iv=b6t, jv=b6s, kv=ab7s, lv=ab7r, mv=b8r, nv=b8q, ov=ab9q, pv=ab9p, qv=b10p, rv=b10o, sv=ab11o, tv=ab11n, uv=ab25, v2=b24, b4w=ab3v, cw=ab2w, dw=ab3w, ew=ab3v, fw=b4v, gw=b4u, hw=ab5u, iw=ab5t, jw=b6t, kw=b6s, lw=ab7s, mw=ab7r, nw=b8r, ow=b8q, pw=ab9q, qw=ab9p, rw=b10p, sw=b10o, tw=ab11o, uw=ab11n, vw=ab25, w2=b24, b3x=ab2w, cx=ab2x, dx=b2w, ex=ab3w, fx=ab3v, gx=b4v, hx=b4u, ix=ab5u, jx=ab5t, kx=b6t, lx=b6s, mx=ab7s, nx=ab7r, ox=b8r, px=b8q, qx=ab9q, rx=ab9p, sx=b10p, tx=b10o, ux=ab11o, vx=ab11n, wx=ab25, x2=b24, b2y=abx, cy=bx, dy=b2x, ey=b2w, fy=ab3w, gy=ab3v, hy=b4v, iy=b4u, jy=ab5u, ky=ab5t, ly=b6t, my=b6s, ny=ab7s, oy=ab7r, py=b8r, qy=b8q, ry=ab9q, sy=ab9p, ty=b10p, uy=b10o, vy=ab11o, wy=ab11n, xy=ab25, y2=b24, bz=ay, cz=by, dz=abx, ez=b2x, fz=b2w, gz=ab3w, hz=ab3v, iz=b4v, jz=b4u, kz=ab5u, lz=ab5t, mz=b6t, nz=b6s, oz=ab7s, pz=ab7r, qz=b8r, rz=b8q, sz=ab9q, tz=ab9p, uz=b10p, vz=b10o, wz=ab11o, xz=ab11n, yz=ab25, z2=b24>
P = {a, b2, b4, b6, b8, b10, b12, b14, b16, b18, b20, b22, b24, d, abe, f, b2f, abg, ab3g, h, b2h, b4h, abi, ab3i, ab5i, j, b2j, b4j, b6j, abk, ab3k, ab5k, ab7k, l, b2l, b4l, b6l, b8l, abm, ab3m, ab5m, ab7m, ab9m, n, b2n, b4n, b6n, b8n, b10n, abo, ab3o, ab5o, ab7o, ab9o, ab11o, p, b2p, b4p, b6p, b8p, b10p, abq, ab3q, ab5q, ab7q, ab9q, r, b2r, b4r, b6r, b8r, abs, ab3s, ab5s, ab7s, t, b2t, b4t, b6t, abu, ab3u, ab5u, v, b2v, b4v, abw, ab3w, x, b2x, aby, z}
Phi = 1 a 1 b ab a 1 b ab c ac b3 d bd e b5 f ab6 g b7 h ab8 i b9 j ab10 k b11 l ab12 m b13 n ab14 o b15 p ab16 q b17 r ab18 s b19 t ab20 u b21 v ab22 w b23 x ab24 y b25 z ab24
Idempotent | |G| | |Arch| |
---|---|---|
1 | 2 | 2 |
b24 * | 4 | 362 |